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Abstract

Functionally graded materials (FGMs) are advanced composites with mechani-

cal properties that vary continuously through a given dimension. The properties are

graded by combining two or more constituents and varying the volume fractions of

the constituents to locally tailor the structure to suit specific applications. FGMs,

especially metal-ceramic composites, have generated a great deal of interest in the

aerospace community in recent years due to their potential flexibility for use in struc-

tural applications where extreme thermal and corrosion resistance are required. A

proposed application for FGMs is the combination of exterior thermal protection

with flight load-bearing structure into a single construction for space-access vehicles.

A critical design requirement of any such material used as external thermal protection

is the ability to withstand an impact from a foreign object in either the atmosphere

or space without compromising the underlying structure. Modeling such impacts in-

volves a deep understanding of the complex physics involved, especially the local and

global dynamic response of the material and structure. Impact response and stress

wave propagation in FGMs have been given almost no treatment in the current litera-

ture. Characterization of FGM impacts is therefore an area of rich research and great

interest. This dissertation demonstrates a novel methodology for characterizing the

impact response of FGM plates. Since this work is an early study in the response of

FGMs subject to impact, the problem was simplified to studying the impact response

of metal-ceramic FGM plates subject to a low-velocity, low- to medium-energy impact

load in a room-temperature environment.

The methodology involved in characterizing the impact response of FGM plates

consists of the following steps: (1) obtain experimental strain histories from FGM

plate specimens subject to impact loading, (2) construct a finite element model of

the FGM impact experiment given available material properties and material models
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for the constituents and constituent mixtures, (3) utilize an analytical parameter

estimation sequence to determine the local material properties of an anisotropic, non-

homogeneous mixture by minimizing the error between the finite element models

and experiments, and (4) study the physics of the impact experiments through the

optimized finite element model and extend the findings to other applications of the

FGM system studied.

The novel method to characterize the impact response of FGM plates was

demonstrated in the following manner. First, a set of monolithic and functionally

graded titanium-titanium boride metal-ceramic plate specimens was obtained for im-

pact experiments. A gravity-driven impact test apparatus was used to deliver con-

centrated impact loads of various energies and velocities to the center of each plate

specimen. The specimens were placed in a fixture that configured the plates very

closely to a simply-supported circular plate. Strain histories were collected during

the experiments to gain insight into the behavior of the plates under impact loading.

A sophisticated finite element model of the experiment was developed capable of in-

corporating various material models to study the impact experiments. Once the finite

element model was validated based on correlation with the results from the impact

tests, a novel parameter estimation sequence was used to refine the estimates for local

material properties in the metal-ceramic FGMs. The parameter estimation sequence

resulted in a finite element model that more closely reflected the impact experiments

and determined local properties consistent with published values for the FGM system.

The refined finite element model was then used to carefully study the impact tests

more closely where valuable conclusions with respect to the physics and behavior of

FGM plates under impact were drawn. The method detailed in this work provides key

contributions to the knowledge and understanding of functionally graded composites

subject to impact loading from which future research efforts can build on.
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A Novel Method For Characterizing the Impact

Response of Functionally Graded Plates

I. Introduction

Functionally graded materials (FGMs) have generated a great deal of interest in

recent years as advanced composites. FGMs are materials that have mechanical

properties that vary continuously along a given dimension. In the case of function-

ally graded plates and shells, the property gradation occurs through the thickness.

The property gradation is achieved by either chemically treating a single material to

locally alter its properties or combining two or more separate materials with locally

prescribed volume fractions. FGMs composed of two material constituents mixed to-

gether with locally prescribed volume fractions have been the focus of the majority

of the literature concerning FGMs and will be the focus of the study here. The ma-

terial distribution through a plate has been often conveniently described by adopting

a power-law function to define the volume fraction V f of the constituent 1 material

at any given coordinate through the plate thickness [98]:

V f
1 (z) =

(
z

h
+

1

2

)n

(1.1)

V f
1 is the volume fraction of constituent 1, z is the depth coordinate measured from

the plate’s mid-surface, h is the overall plate thickness, and n is an arbitrary exponent

value greater than or equal to zero. The volume fraction of constituent 2 material at

any z coordinate is then given by the relation

V f
2 (z) = 1− V f

1 (z) (1.2)

Refer to Figures 1.1 and 1.2. The distribution of constituents for a metal-ceramic FGM

are shown, where constituent 1 is ceramic and constituent 2 is a metal. Figure 1.1
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shows plots of the local volume fraction of constituent 1 (ceramic) for various n values

through the plate thickness, and Figure 1.2 shows an example of how the material

distribution through the plate thickness might appear. Special FGM distributions

using the power-law relation include (1) n = 0, a plate fully composed of material 1,

(2) n = ∞, a plate fully composed of material 2, and and (3) n = 1, a linear gradation

of constituent 1 to constituent 2. The power-law distribution of constituents is merely

an example of a formula that might be used to describe the gradation through a plate

or shell’s thickness. The exponent n in this case controls the shape of the transition

from constituent 2 on the bottom surface to constituent 1 on the top surface. Virtually

any mathematical function could be devised to serve the same purpose as the power-

law function here. The FGM can be customized to an application by specifying the

form of the gradation to fit the design requirements.

A very attractive feature of functionally graded materials is that they can be

locally tailored to suit specific applications. For instance, a metal-ceramic FGM

could potentially provide corrosion resistance and thermal protection on one surface

while simultaneously providing resistance to mechanical loads through the remaining

structure. The fusion of thermal resistance and mechanical load-bearing structure into

a single construction has obvious potential for weight savings on an air or space vehicle.

This is precisely why FGMs have been proposed for use in thermal protection systems.

Thermal protection systems (TPS) are an integral part of any space-access vehicle

due to the extreme temperatures that can be experienced during flight, especially in

a planetary atmosphere when traveling at high speeds. The Space Shuttle Orbiters,

for example, are subject to temperatures as high as 1500 ◦C at the nose during re-

entry while the temperature of the internal structure must be maintained at 177 ◦C or

less [33]. Reusable launch vehicles (RLVs) generally refer to the class of developmental

platforms designed to operate at hypervelocity speeds in the upper atmosphere. The

TPS for RLVs are being designed to handle flight temperatures on the order of 1500

◦C and yet only requiring minimum refurbishment to send the vehicle back to flight

in a manner of days [20]. The recent successful test of the X-43A hypersonic research

2



Figure 1.1: Power-law distribution of ceramic in terms of vol-
ume fraction for a metal-ceramic FGM plate graded through the
thickness given various n exponents.

Figure 1.2: Cross-section of FGM plate with power-law ce-
ramic volume fraction distribution; n = 2.0. Dark regions are
ceramic rich, light regions metal-rich [32].
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vehicle at Mach 7 in March 2004 provided thermal flight data at various locations

near the vehicle’s TPS. At this speed, temperatures at the nose of the X-43A reached

as high as 871 ◦C [6].

The properties in an FGM plate or shell change through the thickness, and

thus FGMs can potentially provide designers with tailored material response and

exceptional performance in thermal environments. As an example, the TPS on the

space shuttle consists of ceramic tiles bonded to the vehicles superstructure. These

tiles are prone to cracking and debonding at the superstructure/tile interface due to

abrupt transition between thermal expansion coefficients. Essentially, the ceramic

tile expands a different amount than the substructure it is protecting during thermal

loading. The difference in expansion causes stress concentrations at the interface of the

tile and superstructure which can result in cracking or debonding. Such defects in the

thermal protection system can lead to catastrophic failure during flight. The gradual

change in material properties with an FGM alleviates this problem by mitigating the

local stress concentrations from abrupt transitions in material properties [32].

Thermal protection on most vehicles are designed simply to resist the thermal

environment and are not generally assumed to carry any significant mechanical loads

over the flight envelope. The TPS system can, however, constitute the single point of

failure of an entire structure. No better example of this can be illustrated than that

of the Columbia Space Shuttle disaster (STS-107) that occurred February 1, 2003.

The catastrophic loss of the entire shuttle was the result of a flat piece of insulat-

ing foam (roughly 61 cm x 38 cm) that separated from the left bipod ramp of the

external fuel tank during launch and struck the left wing’s leading edge thermal pro-

tection at a relative speed of approximately 240 meters per second [1]. The thermal

protection was compromised, and the underlying structure failed during the extreme

temperatures upon re-entry in the atmosphere. Impact damage to the shuttle TPS

has occurred on every flight, and approximately 2-3% of all the high-temperature rein-

forced carbon-carbon TPS tiles must be replaced after each flight with the remaining

tiles inspected and repaired as required. The impact damage comes from sources such
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as insulation fragments, ice-frost particles during launch, debris at the landing site,

and micrometeroids and debris found in the upper atmosphere and space [33].

There is undoubtedly a great need for development of durable TPS that not

only can withstand extreme thermal environments, but also one that requires little

maintenance. The conventional approach to this problem has generally been to coat

a structural member with refractory or adhesively bond thermal-resistant composites

(i.e., tiles) to its exterior. Under harsh environments, the thermal barrier and/or

adhesive may degrade over time which can pose considerable danger to the underlying

structure. Further, most TPS materials are notoriously brittle and not resilient to

any magnitude of dynamic loading. This fact has led to the prototypical development

of metallic TPS as a potential replacement for space-access vehicles (see [20], [35]).

An ideal TPS would not only protect internal structures from thermal effects but also

support mechanical flight loads and still be robust to external damage and impacts.

A functionally graded material system must demonstrate its potential to resist

impact damage before it can seriously be considered as a replacement to a current

thermal protection system. Nearly all the research to date in the area of FGMs has

been limited to analytical predictions and computer simulations of the static and

vibration response of the composites under thermal and mechanical loading. Almost

no studies of any kind have been undertaken related to impulsive or impact loading of

FGM structures. Further, almost no experimental data is available related to FGMs

of any kind. Given these two major holes in the available body of work related to

FGMs, it is extremely difficult to make any reasonable assumptions of how a graded

composite might perform in an aerospace application.

The FGM impact problem is, in general, highly complex and nonlinear in nature.

For instance, the application involves detailed analysis in the areas of:

• Wave Propagation. The impact will dynamically load the structure and send

a stress wave of significant amplitude through the structure. If the amplitude

of the stress wave is sufficiently high, a plastic or shock wave could potentially
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propagate through the medium inducing permanent deformation or failure. The

material gradation in the plate structure further complicates the problem with

respect to the constant reflection, refraction, and transmission effects at the

numerous material and geometric boundaries.

• Displacement Nonlinearity. The target FGM plates are assumed to be thick

and shear-deformable. The large strains that develop during a high-energy

impact and the gradation of properties through the plate thickness require that

nonlinear displacement theory be developed to describe the response of the

structure. Further, if the impact pressures are sufficiently high, the FGM may

exhibit fluid-like behavior local to the contact point.

• Material Nonlinearity. A suitable ceramic and metal FGM combination for a

TPS very likely would exhibit plastic behavior as the plate loading induces local

stresses beyond the functionally graded material’s yield point. The amount of

plastic deformation may indeed be a function of the thermal gradient and the

strain rate imposed by the impact event.

• Heat Transfer. The extreme temperatures from the space and atmospheric

environments will undoubtedly subject the FGM plates to thermal gradients

that could alter local properties and generate residual stresses that change the

response from that of a similar plate without surroundings of elevated temper-

ature.

• Contact & Pressure Distribution. A projectile in contact with a structure

during impact generates a time-dependent pressure distribution that must be

defined. At high velocities, the form of the distribution may change if the

geometries of the target and impactor are sufficiently transformed due to large

deformations between the objects.

• Damage Evolution & Failure. Manufacturing processes that produce func-

tionally graded materials are sufficiently harsh on its constituents that micro-

defects (i.e., voids and micro-cracks) in the FGM must be assumed. Loading of
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the structure lends itself to damage propagation over time. Damage in the ma-

terial must be accounted for to obtain an accurate model for failure prediction.

This research work represents a first-of-its-kind study to characterize the impact

response of FGM plates. Addressing all of the aspects of the FGM impact problem

discussed above would involve a great deal of study that is beyond the scope of

this work. The problem has therefore been simplified here by eliminating the thermal

environment and limiting the severity of impact loads to the low- and medium-energy

regimes.

The overall goal of this study is to provide a unique method by which the im-

pact response of functionally graded plates can be determined for low-velocity, low-

to medium-energy impact events. Additionally, adequate material models for the

anisotropic, non-homogeneous FGM must be determined to properly study the physics

of the local and global response of the structure subject to an impulsive load of large

magnitude. The objectives of this research, to meet these overall goals, are to:

1. Design and conduct impact experiments on metal-ceramic FGM plates to record

strain histories at various locations on the plate over the duration of the impact

event (Chapter V).

2. Construct a finite element simulation of the impact experiment that is suffi-

ciently sophisticated to capture the dynamic effects of an impact load that is at

the same time easily replicated by scientists and engineers in practice (Chapter

VI).

3. Correlate the results from the experiments and finite element models to available

analytical theory while drawing conclusions regarding the validity of analytical

techniques commonly used in the literature (Chapters VII and VIII).

4. Refine the FGM material models using a parameter estimation sequence to more

effectively and accurately simulate the FGM plate impact experiments (Chapter

VIII).
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5. Provide analysis of the impact response of the FGM plates and make recom-

mendations for engineers and scientists to improve performance and suitability

for applications where resistance of impact loads are required (Chapter IX).

Each of these objectives was met in this research work and each represents a signifi-

cant contribution to the emerging field of functionally graded composites. This report

documents each of these contributions in detail.

This dissertation is organized as follows. Chapter II provides a comprehensive

literature review of the current state of the art in the field of thermoelastic analysis

of functionally graded materials. Chapter III outlines relevant theory associated with

homogeneous and composite plates directly applicable to this research. Chapter IV

presents details pertinent to the titanium-titanium boride metal-ceramic FGM system

chosen specifically for this study. These first three chapters summarize the background

information necessary to the understanding and discussion presented in the remain-

ing Chapters V-IX where the majority of the research and contributions are detailed.

Chapter V describes the design of the FGM plate impact experiments and presents

the results of the plate impact experiments. Chapter VI describes the finite element

model constructed to simulate the FGM plate impact experiments and details com-

parisons between the simulations and the strain histories collected from the impact

experiments in order to validate the models. An analytical treatment of the FGM

plate impacts is explored in Chapter VII and validated through experimental results

and finite element simulations. This analytical treatment is a key component of a

parameter estimation sequence that refines the local FGM material models by mini-

mizing the error between the finite element models of the FGM plate impacts and the

predicted response of the plates using analytical theory and the experimental results,

described in Chapter VIII. Chapter IX describes some of the interesting physics as-

sociated with the impact events that can be further studied as a result of the method

described to characterize the impact response of FGM plates. Finally, Chapter X lists

important conclusions and recommendations for scientists and engineers studying the

FGM plate impact problem in the future.
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II. Literature Review of FGM Studies

The goal of this chapter is to present a comprehensive literature review detailing

the state of the art in functionally graded plate and shell research. The body of

work in FGMs has grown extensively in the last 20 years, and it is prudent to reduce

the review to a manageable level by focusing on the FGM plate and shell problem.

This chapter will demonstrate that there is a definite need for more extensive research

into the FGM plate impact problem, and few have studied this application to date.

Further, while FGMs have been studied extensively in the last two decades, almost no

experimental data has been accumulated to substantiate many of the claims made by

scientists and engineers working directly in the field. The method for characterizing

the impact response of FGM plates in this dissertation is thus a significant contribution

to the field that has not been available to date.

The literature review presented here is of interest to a wide variety of FGM

applications, including thermal protection systems. Note, however, that not all of the

literature discussed is directly relevant to the work presented in this dissertation. This

literature review is intended to give the reader a feel for the variety of studies and

applications intended for graded composites while highlighting that there are many

areas of FGM plate and shell analysis that have not yet been explored. Suresh and

Mortensen [122] published a very detailed literature review in functionally graded

material technology in 1998, and Birman and Byrd [18] very recently documented an

exhaustive literature review of developments in FGM research covering extensively

the period (approximately) 1997-2007. This chapter will concentrate on those works

published in the last decade. The topic areas include the following: (1) residual stress

studies, (2) thermoelastic static analyses, (3) thermomechanical buckling, (4) FGM

plate vibrations, and (5) stress wave and impact studies.

2.1 Residual Stress Studies

Residual stress studies related to FGM research are first discussed. These

stresses can be associated with the various manufacturing techniques used to con-
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struct the FGM structures or they can be the result of thermal loading and thermal

cycling of the FGMs (such as in a thermal protection system). Residual stresses can

occur when two materials with mismatching thermal expansion coefficients are bonded

together in a two-phase composite. Although residual stress effects are not being di-

rectly studied here, they will need to be considered before candidate FGMs can be fully

integrated into thermal protection systems subject to high-temperature environments.

Significant residual stresses in an FGM structure can potentially decrease an FGM’s

ability to survive a subsequent impact load while in service on an aerospace platform.

An early finite element investigation into this FGM problem was conducted

by Williamson, Drake, and Rabin [134], [38] in 1993. They considered aluminum

oxide-nickel (Al2O3-Ni) functionally graded specimens in three configurations: (a)

a disk, (b) a rod, and (c) a thin film with substrate. The goal of the work was

to assess the effects of residual stress on FGMs when cooled. Sharp and gradual

transitions between Al2O3-rich and Ni-rich regions were considered with elastic-plastic

constitutive models based on the modified rule-of-mixtures (explained in Chapter III).

The authors additionally attempted to reduce the residual stress profiles in the FGM

specimens by optimizing the graded region profiles. They concluded that reducing

residual stresses in graded regions required optimized profiles and gradual transitions

of material properties over thick regions.

Giannakopoulos et al. [46] examined the behavior of FGM beams and FGM

plates under thermal cycling. The structural members were essentially three-layer

composites similar to those presented by Williamson et al. The FGMs were con-

structed with Al2O3-Ni constituents. The top layer of the beams and plates was

constructed with nickel and the bottom layer was ceramic Al2O3 of equal thickness.

A graded region of FGM, composed of a mixture of Al2O3-Ni, was sandwiched in

between the ceramic and metal layers. The classic rule-of-mixtures (explained in

Chapter III) was used to determine the Poisson’s ratio and coefficient of thermal ex-

pansion in the graded layer. The modified rule-of-mixtures was used to estimate the

flow stress and the plastic tangent modulus. Temperature cycles were imposed that
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induced plastic deformation in the members. The investigators developed analytical

equations to predict the stress distributions and onset of plasticity in the members as

a function of height in the beam and depth in the plate. Finite element models were

developed in ABAQUS to predict the accumulated plastic strain as thermal cycles

progressed over time. The work presented a framework for analyzing problems of this

nature. Finot et al. [41] continued this work by conducting experiments with actual

FGM specimens. The specimens were plates 21 mm x 21 mm and 3.85 mm thick.

The plates were constructed with a nickel layer 1.2 mm thick on the bottom, an FGM

layer 2.2 mm thick with a linear gradation of volume fractions of Al2O3-Ni generated

in 13 discrete steps, and a top layer of Al2O3 0.45 mm thick. An individual FGM

plate was placed on a heating table with no other constraints. The heating table

applied various thermal cycles while curvature of the plate was measured. The cur-

vatures were then related to numerical models predicting stress and curvature under

the same conditions. The modified rule-of-mixtures was found to reasonably approxi-

mate the response demonstrated through the tests. This result is important in that it

demonstrated the utility of the modified rule-of-mixtures as a viable material model

in analysis.

In 1995, Ravichandran [96] investigated residual stresses in Al2O3-Ni FGM sys-

tems that occur during high-temperature fabrication. The objective of this study was

to determine the effects of the residual stresses and propose guidelines for optimum

processing conditions. Elastic modulus and coefficient of thermal expansion were as-

sumed to be temperature-dependent, although the residual stresses were found to not

change appreciably from analyses conducted with temperature-independent proper-

ties. Net material properties in graded regions were determined based on functions of

the volume fraction ratios of the constituents. These functions were specifically devel-

oped for this study and were not associated with some of the more common models

used (discussed in the next chapter). The FGM structures consisted of plates of finite

thickness and infinite span with FGM regions transitioning metal and ceramic layers

on the top and bottom of the plates. Ceramic, metal, and FGM layers were allowed
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to vary in thickness and the graded regions used a power-law distribution to define

the volume fraction ratios of metal to ceramic. It was found that linear variation of

metal-to-ceramic volume fraction ratio produced the lowest residual stresses. Further,

if the FGM layer must be constructed in discrete rather than continuous steps, many

discrete layers of constant volume fraction ratio are much more desirable than few

layers with abrupt changes in volume fraction ratio.

Becker et al. [61] studied the FGM residual stress problem in a slightly differ-

ent fashion. Here, equations were developed from classic thermo-elasticity where the

displacement, stress, and strain fields induced to an FGM under loading were decom-

posed into two separate contributions to the overall solution. The first contribution

to the fields was associated with the solution of a homogeneous medium with the

same geometry, loads, and boundary conditions as the FGM. The second contribu-

tion to the fields was associated with the varying material properties as a function of

position. The contribution from the locally varying material properties in the FGM

was treated as a residual effect in a thermo-mechanical analysis that could be used

to approximate the effects of various grading schemes with regard to constituents.

The approximate method was compared to exact solutions and finite element so-

lutions to assorted graded structural members under different boundary conditions.

The approximate solution was found to provide a good qualitative (and occasionally

quantitative) measure of FGM behavior under steady-state thermal loading condi-

tions thereby reducing the need for expensive finite element analyses for some FGM

configurations.

Hill and Lin [55] performed an experimental and numerical study of residual

stresses in functionally graded titanium-titanium boride plate specimens manufac-

tured by Cercom, Inc. (now BAE Systems-Advanced Ceramics). The plate specimens

were 150 mm x 150 mm – 17 mm thick. The FGM consisted of seven homogeneous

layers through the thickness transitioning commercially pure titanium to a mixture

of 85% titanium boride and 15% titanium. Two beam samples were cut out of the

parent plate near the center, 150 mm long x 17 mm high x 6.4 mm deep. Residual
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stresses were experimentally determined by cutting slots at incremental depths into

beams (these samples used the entire FGM thickness with all seven layers) at strate-

gic locations and measuring the relaxation in the beams using strain gages. In this

fashion, a strain profile can be obtained as successive cuts are made and the stress

distribution is obtained through a superposition method (this technique is named the

crack-compliance method, attributed to Prime [95]). The average peak residual stress

was found to be 40 MPa, which the authors claimed is 11% of the tensile strength

of commercially pure titanium (4.4% of the maximum flexural strength of monolithic

titanium boride). A separate study was discussed in the paper where critical fracture

loads could be reduced by as much as 34% as found in experiments with the same

FGM system given the residual stresses reported here.

2.2 Thermoelastic Static Analyses

Here, a review of the current state of the art in analytical thermoelastic static

relationships of FGM plates and shells is presented. A desirable feature of FGMs

is integration of thermal protection (ceramic) and mechanical load-bearing structure

(metal) into a single construction. A candidate FGM system for a given application

must demonstrate its ability to withstand simultaneous thermal and mechanical load-

ing. The FGMs studied in this work were subjected to room-temperature environments

to simplify the scope of the project, however, a candidate FGM for use in TPS ap-

plications must be studied with thermal effects in mind. The reason for this is that

inherent material properties and structural member geometry can change with chang-

ing temperatures. Material and configurational changes can affect an FGM’s ability

to withstand impact loads from foreign objects. Further, the quasi-static response

of any structural member under load on an aerospace platform must be considered

before the dynamic effects of flight loading are addressed.

Praveen and Reddy [94] presented one of the earliest and most widely used de-

velopments of thermoelastic behavior of functionally graded rectangular plates that

included nonlinear effects. Praveen and Reddy essentially adapted the plate theory
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from laminated composites and adapted the material stiffness parameters (i.e., the

[Aij], [Bij], [Dij] matrices and other material parameters) from summations over dis-

crete layers to integrals of the continuous function defining the material variation

through the plate and shell thicknesses. A more thorough explanation of this and

other similar work will be presented in Chapter III.

Praveen and Reddy’s formulation for rectangular functionally graded plates was

extended to an axisymmetric formulation for first-order shear deformable FGM circu-

lar and annular plates in bending by Reddy et al [103]. Solutions for the deflection,

force resultants, and moment resultants were given in terms of the corresponding

quantities of isotropic plates based on classical Kirchhoff plate theory. The solu-

tions to these problems are then available provided the Kirchhoff solutions to the

same problems for isotropic, homogeneous plates are available. The theory from this

work will play a very important role in the analytical treatment of the FGM plate

impact problem and will be rigorously discussed in Chapter VII. The theory origi-

nally formulated by Praveen and Reddy was further extended by Reddy [98] to more

general relations for functionally graded plates allowing third-order shear-deformable

plates to be considered. Reddy also derived the finite element models consistent with

the third-order shear deformable plate theory and additionally incorporated thermal

and nonlinear effects. Woo and Meguid [136] in 2001 published an early formula-

tion of large deformation of thin functionally graded plates and shallow shells under

combined mechanical and thermal loading using classical nonlinear plate theory. A

further advance in FGM plate analysis was provided by Reddy and Cheng [101] where

a three-dimensional solution technique accounted for boundary and edge effects and

made use of an asymptotic method to transition to the exact solution from available

plate theory near the interior regions of the plate structure (see also [116], [117]).

Vel and Batra [126] studied small elastic deformations in thick, simply supported

functionally graded plates. Displacement and temperature fields were generated by

imposing thermal and mechanical loads to the top and bottom surfaces of the plate

either individually or simultaneously. Three-dimensional displacement and temper-
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ature fields were assumed to have the form of a power-series solution that solve the

constitutive equations for a linear isotropic thermoelastic material and satisfy the

boundary conditions. The key assumption was that a plate graded through the thick-

ness had smoothly varying material properties (no discrete jumps) and infinitesimally

small adjoining layers were homogeneous, isotropic, and perfectly bonded together.

The power series solutions to the FGM problem were then compared to solutions gen-

erated by classical plate theory as well as first-order and third-order shear-deformable

plate theories. In general, the power series exact solutions matched previous results

only qualitatively. Three material models were considered, namely the Mori-Tanaka

estimates, the self-consistent model, and a combination of the two (these material

models are discussed in detail in Chapter III).

Theoretical equations were developed by Shao [111] for a piping and pressure

vessel application using FGM hollow cylinders graded through the pipe thickness

direction. Shao simplified the analysis to an axisymmetric, two-dimensional model

where stresses could be resolved for general pressure and thermal load distributions

on the exterior and interior surfaces. The pressure and thermal load distributions

depended only on the axial coordinate of the cylinder. The hollow cylinders studied

were of finite length and supported at the ends. In 2006, Shao and Wang [112]

continued this work to a more general theory applying to FGM cylindrical panels

of finite length under general loading conditions. Three-dimensional solutions were

assumed so that thin or thick panels could be accommodated. The response of an

FGM cylindrical shell subject to a thermal shock load was subsequently studied using

a finite element formulation by Bahtui and Eslami [11].

Hsieh and Lee [57] recently developed FGM plate theory for an unusual appli-

cation. Here, the two investigators studied classic nonlinear von Kármán plate theory

applied to elliptical FGM plates. The plates were rigidly fixed around a boundary

that was allowed to be slightly disturbed (i.e., not perfectly elliptical in shape). A

perturbation technique was used to solve the governing equations for displacements,

although only approximate solutions were presented. The theory was tested given a
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measured plate center deflection. The complete displacement field was obtained from

the presented solutions, and the stress resultants throughout the plate were then

available.

Pai and Palazotto [87] in 2007 introduced a sublamination theory for analyz-

ing the response of functionally graded plates. Essentially the through-the-thickness

gradation was divided into individual sub-layers to increase the degrees-of-freedom

through the thickness and improve the numerical accuracy in predicting the three-

dimensional stress state in the plate. The sublamination theory is extremely flexible

in that it can be formulated to satisfy assumptions of either classical plate theory

or more complicated higher-order shear deformable plate theories. Further, the gov-

erning equations for a plate composed of several sublaminates converges to the usual

governing equations in plate theories when the number of sublaminate layers equals

one. The theory was shown to match the exact solutions of plates extremely well to

include the prediction of mode shapes.

Abrate [5] recently demonstrated that functionally graded plates actually be-

have more like homogeneous plates than originally thought. The usual method for

determining the in-plane stiffness, bending-extension coupling, and bending stiffness

matrices ([A], [B], [D], respectively) is to use the mid-surface of a composite plate as

the reference surface. Abrate shows that if the reference surface is chosen judiciously

such that the bending-extension coupling disappears, the in-plane and bending stiff-

ness matrices derived from the new reference surface are the only material parameters

required to solve the governing equations for plate deflections and vibrations. This

new approach was shown to dramatically simplify the analyses while simultaneously

matching identically the results published by other investigators for FGM plates as-

suming both classical plate theory and higher-order shear deformable plate theories.

2.3 Thermomechanical Buckling Studies

Buckling of FGM plates and shells is an important topic that is being studied

by some researchers. Many FGM plates and shells are graded in a fashion such that
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the material composition is non-symmetric about the mid-plane of the plate or shell.

FGMs of this type will undergo changes in curvature as mechanical and thermal loads

are applied due to bending-extension coupling effects. Accounting for this fact is

critical in a buckling analysis, as buckling loads may be much lower in magnitude

than those of the same structural member composed of a homogeneous or symmetric

material composition. FGM plate buckling becomes very important when considering

FGMs for use in thermal protection systems, and a plate or shell structure that has

buckled may be less resilient to an impact event.

One of the first studies into the FGM buckling problem was performed by Shen

[117] in 2002. Shen was concerned with post-buckling analyses of axially loaded FGM

cylindrical panels that additionally contended with thermal environments. The panels

were graded through the thickness and a classical rule-of-mixtures approach was used

to model temperature-dependent material properties. Shen used a higher-order shear

deformation shell theory to describe the governing equations under thermo-mechanical

loading. A perturbation technique (similar to one used by the same author to model

the bending response of FGM plates [116]) was used to not only construct the asymp-

totic relations between the boundary layer and the regular solution, but another

perturbation relation was applied to simultaneously account for any geometric imper-

fections in the cylindrical panels. Shen verifies his developed equations by comparison

to published results for isotropic cylindrical panels, and then provides buckling data

for various FGM systems, although there is no available test or simulation data to

compare results to.

The FGM buckling problem has been extensively studied by Javaheri, Eslami,

and Samsam Shariat ( [59], [58], [60], [115], [113], [114]). In 2002, Javaheri and

Eslami [59] developed closed-form solutions to the thermal buckling problem with

rectangular FGM plates graded through-the-thickness using a power-law distribution

of metal and ceramic constituents. Classical plate theory formed the basis for their

solutions. The critical buckling loads were characterized by changes in temperature

from the ceramic-rich surface to the metal-rich surface under various temperature
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profiles (linear and nonlinear) across the thickness of the plate. Their results reduced

well to previous solutions to the same problem for homogeneous plates. Two impor-

tant observations from their work regarding an alumina-aluminum FGM system were

that (1) critical buckling temperature change is predicted to be lower for FGMs than

for homogeneous plates and (2) increasing the power-law exponent n in equation (1.1)

reduces the critical temperature difference before buckling occurs. The same analysis

was extended to higher-order, shear deformable plate theory by the same authors [60].

Similar observations were recorded considering the higher-order theory, and it was also

found that the higher-order theory underestimated critical buckling temperature dif-

ference predicted by classical plate theory. Buckling due to mechanical in-plane loads

applied to FGM rectangular plates was first studied by Javaheri and Eslami [58] and

later by the the same authors with Samsam Shariat [115] considering rectangular

FGM plates with small imperfections in shape. Imperfections here were defined to

be small deviations of the mid-plane from a perfectly flat surface, later idealized to

follow a sinusoidal relation with an amplitude parameter to characterize the net im-

perfection. Comparing the results of the studies, based on classical plate theory, the

authors found that increasing magnitude of small imperfections in the plate actu-

ally increase the critical buckling load over a perfect plate and increasing power-law

exponent n decreases the critical buckling loads. Samsam Shariat and Eslami [113]

used the same ideas to study thermal buckling of imperfect FGM plates, concluding

again that imperfect FGM plates have higher critical temperature differences than

those of perfect FGM plates. Finally, Samsam Shariat and Eslami again collaborated

to develop equations to predict the combined critical mechanical and thermal loads

necessary to induce buckling for thick rectangular plates, here applying higher-order

shear deformable plate theory [114].

Na and Kim [83] studied the FGM plate buckling under combined thermal and

mechanical loads by using the finite element method. They developed an 18-node

solid element that includes the grading function as part of the element’s formulation.

The theory is very generalized such that almost any continuous grading function can
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be used to describe the material mixtures and an assumed-strain mixed formulation is

used to construct the global stiffness matrix and global nodal load vector. Their finite

element model was compared to results from previous investigators for both isotropic

and FGM plates, and the authors present suggestions for design to prevent buckling

in application.

Yang et al. [137] presented another post-buckling analysis where imperfection

sensitivity of higher-order shear deformable FGM plates was considered. Mechanical

loading in the form of uniform edge compression and thermal loading in the form of

a uniform temperature change were applied to the FGM plate. Various gradations,

boundary conditions, and plate configurations were studied parametrically with local

and global imperfections applied to the plate. An important observation in the article

was that post-buckling strength was not significantly affected by global imperfections

to the plate, but local imperfections in close proximity to the center of the plate could

significantly reduce the post-buckling strength.

2.4 Vibration Analyses of FGMs

The three previous sections summarized some of the recent ground-breaking

works in static analyses of FGM plates and shells. This section and the following

will present an outline of the body of literature available on FGM plate dynamics;

specifically, vibration and modal analysis of FGM plate structures (this section) and

impact and wave analysis (next section).

One of the first studies in FGM plate and shell vibration analysis was presented

by Loy et al. [74] in 1999. In this paper, a specific application of simply-supported

FGM cylindrical shells was addressed. Cylindrical FGM shells are of interest partic-

ularly in pressure vessel and piping technologies. The authors assumed a power-law

variation in volume fraction of constituents from the inner to the outer shell surface

and the material properties varied through the shell thickness according to the classi-

cal rule-of-mixtures with handbook material properties for the individual constituents.

Once the constitutive relations were formulated, the authors employed the Rayleigh-
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Ritz method to solve for the natural frequencies of the shell structure. The authors

compared results for various volume fraction distributions of a metal-ceramic FGM

system and found that natural frequencies for an FGM shell lie between the natural

frequencies calculated for a purely metal or purely ceramic shell. A qualitative study

was also performed when the geometry of the shell was allowed to vary. Pradhan et

al. [92] in 2000 extended this same work and studied the vibration characteristics of

FGM cylindrical shells under all possible combinations of clamped, free, and simply-

supported boundary conditions. The authors compared results for various volume

fraction distributions of a metal-ceramic FGM system and found that natural fre-

quencies for an FGM shell lie between the natural frequencies calculated for a purely

metal or purely ceramic shell, precisely the same conclusion as the previous study.

Reddy and Cheng [102] in 2002 extended the FGM shell frequency analysis further by

considering a simply-supported shallow spherical shell of polygonal planform resting

on an elastic foundation.

The dynamic response of initially stressed rectangular FGM plates was studied

by Yang and Shen [138] in 2001. A rectangular plate, graded through the thickness

with a power-law distribution and material properties governed by the classical rule-

of-mixtures, was assumed to be clamped on all sides or clamped on two sides and

simply-supported on two sides. The plate was allowed to rest on an elastic foundation

and be subjected to initial in-plane uniaxial or biaxial stresses, although both or

neither of these features need be included. The plate was subjected to a pulse load

that was either constant, linear, sinusoidal, or exponential with respect to time over

a rectangular patch of the plate surface and was removed abruptly at a given time in

order that the plate entered free vibration. Classic plate theory was used to model the

dynamic and transient responses of FGM plates under these conditions. The results,

as expected, were found to vary greatly depending on the power-law exponent n,

plate aspect ratio, foundation stiffness, shape and duration of pulse load, and initial

stress magnitude. The authors continued this work by extending their analyses to

thick, shear-deformable FGM plates in thermal environments in a paper published
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in 2002 [139]. Yang and Shen developed a very general plate theory (minus the case

of an elastic foundation) where the response of the plate could be semi-analytically

determined under general load and boundary conditions, including the case of an

initially stressed plate.

Another engineering problem associated with FGM plates and shells pertains

to buckling caused by dynamic loading. An early study into this problem was un-

dertaken by Ng et al. [85] in 2001. Their work focused on dynamic stability of FGM

cylindrical shells simply-supported at the ends under periodic axial loads. The ap-

plied axial load was decomposed into a static contribution and dynamic contribution,

either or both of which could be included in analysis without loss of generality. The

equations of motion for the FGM cylindrical shell were presented and solutions for

the displacements under static and dynamic conditions were generated as were the

conditions for the onset of buckling. Regions of shell instability were determined

based on shell configuration and load parameters. The main conclusion of this work

is that tailoring the FGM material distribution is the best way to improve the dy-

namic stability of the cylindrical shells. Another study of dynamic buckling of FGM

shells was performed by Sofiyev [120]. Sofiyev’s work was rooted in solving for sta-

bility of truncated conical FGM shells subject to a uniform external pressure load.

The pressure magnitude applied to the truncated cone was a power-function of time.

Sofiyev used analytical theory to predict the critical external pressure impulse and

application time that induces buckling on such a structure. The same conclusion that

the distribution of material properties can significantly alter the stability of the FGM

shell was found in Sofiyev’s study. A recent study of particular interest was conducted

by Sundararajan et al. [121] in 2006 where dynamic buckling of FGM spherical caps

was investigated. The von Kármán large deformation theory was employed in the

constitutive equations and the FGM caps were clamped or simply-supported with

an external uniform pressure pulse applied over a prescribed duration. The authors

conclude again here that material distribution can affect critical buckling loads, but

shell geometry, boundary conditions, and pulse duration also significantly affect the
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onset of buckling and must be considered. Prakash and Ganapathi [93] in 2006 also

performed a study of FGM shear-deformable circular plates under a temperature dis-

tribution where both structural stability and modal frequencies were simultaneously

considered using a customized finite element.

2.5 Stress Wave and Impact Analyses

Here, recent work published to study impact response and stress wave propa-

gation in functionally graded plate and shell structures will be reviewed. Many of

the concepts in wave motion and structural vibrations are the same (except in appli-

cations with very high pressures, large displacements, and failure), but a few notes

regarding the response of structures subject to impact loading are in order. Impact

problems where the impact velocity is relatively low (for instance, 10 meters per sec-

ond or less) can typically be studied using quasi-static or vibration theory. In higher

velocity impact events, the structural loading typically occurs over a very short pe-

riod of time, usually on the order of microseconds (1.0 x 10−6 seconds). In these

problems, the initial disturbance in the structure due to the impulsive load is traced

locally. The magnitude of the disturbance is of the most interest for two reasons: (1)

an impulsive load spans a large part of the frequency spectrum and thus modal exci-

tation occurs over a large number of structural modes and (2) the length and scope

of the structure’s primary response will occur locally and much more quickly than

the period of the first natural frequency of the structure. In structural vibrations,

usually the global movement of the structure is of greater interest since the loading

occurs over sufficiently long periods of time that the response of the global structure

dominates the response history. Applications where an impact load was applied to

an FGM structure (regardless of velocity) or a general wave analysis was performed

will be considered in this section in the context of the points made in this paragraph.

(See [48], [50], [142], [39] for explanations on these points.)

A purely analytical study of the low-velocity, elastic impact of hollow FGM

cylinders was performed by Gong et al. in 1999 [49]. The cylinders were assumed suf-
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ficiently thick to apply third-order shear deformable theory to the governing equations

of motion. Fourier series solutions were assumed to solve the equations of motion,

and an impulsive load was applied to the cylindrical shell based on the mass and ve-

locity of the striker. Four FGM configurations were considered consisting of stainless

steel and silicon nitride. The cylinders were divided into single and two-layer models,

where each layer was graded according to a power-law distribution. The cylinders

all had the same length, thickness, and diameters. The dynamic hoop strains were

determined at select locations in the cylinders. The cylinder configuration found to

have the best impact resistance (determined by the lowest magnitudes of hoop stress

and strain transients and a minimal transverse shear stress profile) was a two-layer

FGM with the shell having stainless steel surfaces on the inner and outer diameters

and transitions to a silicon nitride-rich surface midway through the shell thickness.

Heat transfer and thermal stress analyses were not included in the study.

An analytical method for tracing one-dimensional stress waves in FGMs was

proposed by Bruck [23] in 2000. The contribution of this paper is very important in

that it is an early analysis of transmission and reflection as a wave propagates through

a graded medium. The medium considered was a cylinder composed of three sections:

(1) a sufficiently long section of a single homogeneous material; (2) a region that is

functionally graded either discretely or continuously; and (3) a sufficiently long section

of a second homogeneous material. The homogeneous base materials are assumed to

have different material properties and the graded region transitions from one base

material to the next following a function similar to a power-law relation defining the

volume fraction of one base material to the other (see equation (1.1)). Bruck used

these assumptions to derive formulas to trace the stress history in the cylinder given

an incident wave traveling through section (1) that constantly transmits and reflects

as it moves through the graded region. The magnitude of the reflected stress waves

at a point over time was shown to be a function involving a summation of individual

reflected waves in each graded layer for a discretely graded FGM and integration

of a continuous function (relating transmission and reflection of waves through the
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region) for a continuously graded FGM. Note that stress wave propagation analysis

in plates or other multi-dimensional structures must consider transmission, reflection,

and refraction effects in multiple dimensions.

Li et al. [73] studied impact of thick circular FGM plates under impulsive load-

ing. A circular plate 200 mm in diameter and 24.5 mm thick was composed of an

aluminum matrix with ceramic reinforcement particulate inclusions. The plate was

fixed along the outer perimeter of the plate, but the authors note that the boundary

effects are not important because the time scales studied are small compared to the

time for the stress waves to reach the boundaries. The circular plate was subjected

to a 3.0 GPa pressure load, such as might occur from a high-energy impact, that

ramped from zero to 3.0 GPa over 0.1 microseconds (µ-sec), remained constant at

3.0 GPa for another 2.90 µ-sec, then ramped down from 3.0 GPa to zero over an

additional 0.1 µ-sec. Several discrete-layer grading configurations were studied in

an axisymmetric model using the commercial finite element analysis code ABAQUS.

The elastic properties of the FGM were determined using the Hashin-Shtrikman for-

mulation [53] and the Li-Ramesh Constitutive Model [71], [72] (a specific strain-rate

sensitive constitutive model for metal-matrix composites developed by the authors)

was used to determine the plastic behavior of the FGMs based on local reinforcement

volume fraction ratio and applied strain-rate. The authors studied the effects of axial

stress distribution, plastic strain distribution, and energy dissipation. Based on their

analysis, the authors made a few important conclusions: (1) the grading configura-

tion and layer thicknesses can be designed to control location and timing of spall

failure; (2) grading configuration and layer thicknesses can be designed to control

location, timing, and size of the overall plastic zone in the material; (3) the evolution

of dissipated energy is directly related to the gradation of material properties.

Banks-Sills et al. [12] looked at the dynamic response of a simulated strip of

FGM infinitely long and graded through the height under plane strain conditions.

The FGM was a metal-ceramic combination modeled by determining material prop-

erties using three microstructure models: (1) non-random two-phase model with metal
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and ceramic cells; (2) homogeneous discrete layers; and (3) continuously changing mi-

crostructure. A time-dependent compressive pressure load was applied to the top

of the FGM through a special functional relation such that the rise time character-

istics of the pressure load could be manipulated. The pressure load applied varied

between an abrupt step input to a very slowly applied load near quasi-static condi-

tions. A specialized finite element code was used to measure the von Mises effective

stress under the different load conditions. For gradual load application, the FGM

slowly reached a final deformation. For abrupt pressure applications, the FGM ex-

hibited wave characteristics where the FGM stresses oscillated in a periodic fashion

(no damping, elastic deformations only). All three microstructure models generated

similar results, although the authors preferred the layered and continuous models for

use in practice.

2.6 Concluding Remarks

This chapter highlighted the most pertinent literature available to research engi-

neers studying FGM plate and shell structures. The topic areas included the following:

(1) residual stress studies, (2) thermoelastic static analyses, (3) thermomechanical

buckling, (4) FGM plate vibrations, and (5) FGM stress wave and impact studies.

Having reviewed a large segment of the FGM research available, it is apparent that

nearly all the research conducted has been purely analytical or in computer simula-

tion. Almost no experimental work has been conducted with FGMs to reinforce the

claims made by these and other investigators. Therefore, any successful experiments

with accompanying data represent an important contribution to the field of study in

FGMs. Further, impact studies with FGMs have not been vigorously undertaken to

this point. This dissertation therefore represents an important first step in developing

this rich area of research, and the following chapters will describe in greater detail a

method for characterizing the impact response of FGM plates.
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III. Material Models and Relevant Plate Theory

The goal of this chapter is to present a review of specific theory directly relevant

to understanding the FGM plate impact problem studied specifically in this dis-

sertation. The first part of the chapter presents material models that are commonly

applied to metal-ceramic functionally graded materials; specifically, the classic rule-

of-mixtures, the modified rule-of-mixtures, the self-consistent model, and the Mori-

Tanaka estimates. The second part of this chapter presents select portions of classic

and shear-deformable plate theory that are basic to this research, including a more

specific case of circular plates under axisymmetric loading. A key assumption behind

the use of these material models and the plate theory presented is that the behavior

of the FGMs is linear-elastic. It will be shown in later chapters that FGM specimens

used in the impact experiments designed for this work behaved nearly linear-elastic

to failure. The theory in this chapter will be referred to frequently throughout the

remainder of this dissertation, especially in the discussions of the FGM plate impact

experiments and their associated computational and analytical models.

3.1 Material Models

In this section, an overview of commonly used material models in FGM research

is presented. These material models are important in the sense that most attempt to

describe the constitutive relationship with a closed-form analytical formula based on

the volume fraction ratio of constituents. The most commonly used material models

for FGM studies are the classical and modified rules-of-mixtures, the self-consistent

model, and the Mori-Tanaka estimates; all are presented here in detail. A few other

more mathematically complex material models are briefly listed for reference purposes.

3.1.1 Classical Rule-of-Mixtures. The classical rule-of-mixtures attempts

to directly relate the net material properties of multi-phase materials to the ratio of

volume fractions of the constituents. If P is an arbitrary property of a two-phase
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mixture and P1 and P2 are arbitrary properties of the two phases, then the relation

P = V f
1 P1 + V f

2 P2 (3.1)

is assumed to describe the local properties of the FGM under the classical rule-of-

mixtures. In an FGM plate, the volume fractions of the two phases change as position

changes through the thickness. Therefore, a more appropriate version of (3.1) can be

written as

P(z) = V f
1 (z) P1 + V f

2 (z) P2 (3.2)

Equation (3.1) is based on the Voigt model for determining longitudinal stiffnesses if

both FGM phases are in a state of equal strain [122], [34]. The assumption that the

two phases in the FGM are in a state of equal strain can be thought of as analagous

to (two) springs acting in parallel to resist a longitudinal force. A force extends

or compresses two springs in parallel an equal distance (i.e., equal strain) and the

springs exert forces based on their appropriate spring constants (i.e., elastic moduli

adjusted by volume fractions). For this reason, the Voigt model is often referred to

as a “parallel” model in composite theory. The rule-of-mixtures is frequently applied

to determining longitudinal properties in fibrous-woven composites and was originally

developed for determining a net elastic modulus for a two-phase mixture, although

it is also frequently applied to determine other properties such as Poisson’s ratio and

density. In terms of typical elastic properties, (3.2) takes the following forms:

E(z) = V f
1 (z) E1 + V f

2 (z) E2 (3.3)

ν(z) = V f
1 (z) ν1 + V f

2 (z) ν2 (3.4)

ρ(z) = V f
1 (z) ρ1 + V f

2 (z) ρ2 (3.5)

E is the elastic modulus, ν is the Poisson’s ratio, and ρ is the material density of the

individual phases.
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Occasionally properties in the transverse direction are associated with the Reuss

model [122], [34] where

P =

(
V f

1

P1

+
V f

2

P2

)−1

(3.6)

If a local property is required of a continuous FGM, then

P(z) =

(
V f

1 (z)

P1

+
V f

2 (z)

P2

)−1

(3.7)

also applies. The Reuss model assumes that the phases in the composite are under

a state of equal stress and is typically applied to the elastic modulus, shear modulus,

and Poisson’s ratio. The assumption that the two phases in the FGM are in a state

of equal stress can be thought of as analagous to (two) springs acting in series to

resist a longitudinal force. A force extends or compresses two springs in series with a

force applied over more or less an equal area (i.e., equal stress) and the springs exert

forces based on their appropriate spring constants. The springs are compressed or

extended by different lengths, as determined by their spring constants (i.e., elastic

moduli adjusted by volume fractions). For this reason, the Reuss model is often

referred to as a “series” model in composite theory. In terms of elastic modulus,

shear modulus, and Poisson’s ratio, (3.7) takes the following forms:

E(z) =

(
V f

1 (z)

E1

+
V f

2 (z)

E2

)−1

(3.8)

G(z) =

(
V f

1 (z)

G1

+
V f

2 (z)

G2

)−1

(3.9)

ν(z) =

(
V f

1 (z)

ν1

+
V f

2 (z)

ν2

)−1

(3.10)

G is the shear modulus of the material. Often the actual value of the composite

properties can be found to be bounded between equations (3.1) and (3.6), yet both
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estimates are crude and limited in application [34]. Nevertheless, both the Voigt and

Reuss models allow for very simple estimation of elastic properties.

3.1.2 Modified Rule-of-Mixtures. A modification to the classical rule-of-

mixtures was originally proposed by Tamura et al. [123] for a two-phase mixture

where one phase (subscript 1) was purely elastic and a second phase (subscript 2)

exhibits plasticity. This modification was shown to match relatively well with exper-

imental data [42]. The theory is explained briefly here. It is first assumed that at an

infinitesimal local z-coordinate in the plate thickness the FGM behaves isotropically.

If such is the case, the uniaxial stress σ and strain ε are related to the average strains

in the individual constituent phases by

σ = V f
1 σ1 + V f

2 σ2

ε = V f
1 ε1 + V f

2 ε2 (3.11)

The ratio of stress to strain transfer between the phases can be defined by the pa-

rameter

q =
σ1 − σ2

ε1 − ε2

(3.12)

which is bounded by 0 < q < ∞. When q = 0, the constituents are under a state of

equal stress (i.e., parallel Voigt model); when q = ∞, the constituents are under a

state of equal strain (i.e., series Reuss model). The elastic (or Young’s) modulus of

the mixture can be determined by combining equations (3.11) and (3.12) assuming

uniaxial Hooke’s law (σ = E ε) applies:

E =

{
V f

2

(
q + E1

q + E2

)
+ V f

1

}−1 {
V f

2 E2

(
q + E1

q + E2

)
+ V f

1 E1

}
(3.13)

The yield stress σy (that is, the stress above which yielding in the material occurs

and permanent plastic deformation must be considered in the structure) in the FGM

29



mixture can be determined using the previous equations and Figure 3.1:

σy = σy 2

{
V f

2 +

(
q + E2

q + E1

)
E1

E2

V f
1

}
(3.14)

σy 2 is the yield stress of constituent 2. The uniaxial plastic modulus H (that is, the

modulus used to relate stress and strain above the yield stress) can also be evaluated

to be

H =

{
V f

2

(
q + E1

q + H2

)
+ V f

1

}−1 {
V f

2 H2

(
q + E1

q + H2

)
+ V f

1 E1

}
(3.15)

The modified rule-of-mixtures has been implemented for analysis of functionally graded

materials (for early examples, see [134], [38], [46], and [41]; more recently refer to [28]).

The modified rule-of-mixtures is not as convenient as the classical form, however, it is

of great interest because it allows the design engineer to estimate the yield stress and

plastic tangent modulus for a ductile-brittle combination of materials such as metal

and ceramic. The key to using the equations is finding an appropriate value for q,

which must be determined experimentally.

3.1.3 Self-Consistent Estimates. Hill [56] developed a self-consistent ma-

terial model for two-phase composite materials. The model is general enough to be

assumed applicable to FGMs. Hill showed that if a series of randomly dispersed

isotropic spheres served as inclusions in a homogeneous matrix and if the matrix-

inclusion composite bulk material displayed statistical isotropy (that is, a significant

percentage of the composite behaves isotropically and can be reasonably assumed to

behave as such), then the net bulk modulus K and shear modulus G for the composite

are given by the following relations:

δ

K
=

V f
1

K −K2

+
V f

2

K −K1

(3.16)

η

G
=

V f
1

G−G2

+
V f

2

G−G1

(3.17)

30



Figure 3.1: Illustration of modified rule-of-mixtures approach
for obtaining stress-strain constitutive data for two-phase mix-
tures. A metal-ceramic combination is shown here, with con-
stituent 1 being ceramic and constituent 2 being a ductile metal.
[122], [134].

where δ = 3−5η = K/(K+4G/3), and subscripts 1 and 2 refer to the individual phases,

respectively. Equations (3.16) and (3.17) must be solved for K and G simultaneously.

The bulk and shear moduli are related to the Young’s modulus E and Poisson ratio

ν by

K =
E

3(1− 2ν)
(3.18)

G =
E

2(1 + ν)
(3.19)

Hill noted that equations (3.16) and (3.17) will always satisfy the Hashin-Shtrikman

bounds [53] (presented here without derivation):

K∗
1 < K < K∗

2

G∗
1 < G < G∗

2 (3.20)
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where

K∗
1 = K1 +

V f
2

1
K2 −K1

+
3 V f

1
3K1 + 4G1

(3.21)

K∗
2 = K2 +

V f
1

1
K1 −K2

+
3 V f

2
3K2 + 4G2

(3.22)

G∗
1 = G1 +

V f
2

1
G2 −G1

+
6 (K1 + 2G1) V f

1

5G1(3K1 + 4G1)

(3.23)

G∗
2 = G2 +

V f
1

1
G1 −G2

+
6 (K2 + 2G2) V f

2

5G2(3K2 + 4G2)

(3.24)

for a two-phase material provided that (K1−K2)(G1−G2) > 0. Note that the Hashin-

Shtrikman bounds in (3.20) were derived assuming that K2 > K1 and G2 > G1. If

the opposite is true for both the bulk and shear moduli, the subscripts can be switched

for all variables and the same expressions apply without loss of generality [56].

Examples of the self-consistent estimates for material properties can be found

in [105], [106], and [126]. The self-consistent model provides relationships for two-

phase composites that are perhaps more physically realistic than the rule-of-mixtures.

The main disadvantages of the self-consistent model are that they only apply to

elastic solids and a set of nonlinear implicit equations must be solved to obtain the

elastic modulus and Poisson’s ratio. Further, if the properties of the two constituent

materials vary greatly, it can be difficult to find a solution to the implicit equations

if good estimates of the net composite properties are not known a priori.

3.1.4 Mori-Tanaka Estimates. Mori and Tanaka [81] demonstrated that in

two-phase composites, i.e., a matrix with randomly distributed misfitting inclusions,

the average internal stress in the matrix is uniform throughout the material and inde-

pendent of the position of the domain where the average is obtained. They also showed

that the actual stress in the matrix is the average stress in the composite plus a locally
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varying stress, the average of which is zero in the matrix phase. Benveniste [15] used

their analysis as the basis for developing equations that can be used to determine

bulk and shear moduli for the composite material as a whole:

K −K1

K2 −K1

=
V f

2 C1(
1− V f

2

)
+ V f

2 C1

(3.25)

G−G1

G2 −G1

=
V f

2 C2(
1− V f

2

)
+ V f

2 C2

(3.26)

C1 and C2 are constants, based on the geometry of the inclusions. Berryman [16], [17]

provides a formulation for inclusions with spherical and ellipsoid geometries. General

ellipsoids can be complicated, but spherical inclusions are special cases with simple

formulas for C1 and C2:

C1 =
K1 + (4/3)G1

K2 + (4/3)G1

C2 =
G1 + f1

G2 + f1

f1 =
G1 (9K1 + 8G1)

6 (K1 + 2G1)
(3.27)

Another special case of ellipsoid inclusions is that of needle-shaped inclusions; the

constants C1 and C2 are given by:

C1 =
K1 + G1 + (1/3)G2

K2 + G1 + (1/3)G2

C2 =
1

5

(
4 G1

G1 + G2

+ 2
G1 + f ′1
G2 + f ′1

+
K2 + (4/3)G1

K2 + G1 + (1/3)G2

)

f ′1 =
G1 (3K1 + G1)

(3K1 + 7G1)
(3.28)

The mathematics behind these relations are very complicated and these material

models are presented without derivation. Some practical examples of the use of the

Mori-Tanaka estimates for material properties can be found in [105], [106], and [126].

The Mori-Tanaka estimates have a distinct advantage over the self-consistent models
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in that material properties are obtained by solving explicit formulas for the bulk

and shear moduli of the composite and obtaining the elastic modulus and Poisson’s

ratio from those results. The Mori-Tanaka estimates account for spherical or needle-

shaped inclusions easily (important for the titanium-titanium boride FGM discussed

in Chapter IV) where the self-consistent theory does not easily account for inclusions

other than those of spherical geometry. Unfortunately, the Mori-Tanaka estimates are

constrained to purely elastic analyses and are thus somewhat limited in application.

3.1.5 Other Models. The four material models discussed (rule-of-mixtures,

modified rule-of-mixtures, self-consistent model, and Mori-Tanaka estimates) are not

the only models available. In fact, there are many micromechanics-based models

available. Luciano and Willis noted that the rule-of-mixtures, self-consistent method,

Mori-Tanaka estimates, and others are typically only applicable in functionally graded

materials where volume fractions of constituents are within certain bounds. Further,

some of the assumptions concerning the load and material distributions may not be

entirely accurate when applied to FGMs vs. typical laminated composites. Some

researchers have attempted to combine two or more FGM functional models together

for use in specified regions, although this is not desirable [75]. In 2004, these investiga-

tors derived a single mathematical operator that allows one to develop a thermoelastic

constitutive relation regardless of the local load or material distribution. The opera-

tor is formulated to allow coupling of the load and property distributions given little

or partial knowledge of the microstructure and displacement fields from a statistical

basis. If complete knowledge of the material and displacement fields is available (e.g.,

through experimentation), an exact solution for the constitutive relation is available

using the mathematical operator. In 2007, Yin et al. [140] published a micromechan-

ics model that looks at representative volume elements on a scale small enough to

address the FGM microstructure on the basis of a continuous matrix with spherical

particulate inclusions randomly distributed based on the local volume fraction ratio.

The model is very complicated yet was found to reflect experimental FGM data very
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well. Their material model can account for regions in the FGM where matrix phase

and inclusion phase materials are reversed, i.e., the matrix material becomes the inclu-

sion material and the inclusion material becomes the matrix material. The model is

thus applicable to the spectrum of volume fraction ratios, where models such as those

presented previously may be valid only under certain volume fraction ratio bounds.

While both models described here are more physically accurate than other models

presented, the primary disadvantage in using them is they are very mathematically

complex and are not easily implemented in design practice.

3.2 Relevant Plate Theory

This research is concerned with the impact response of functionally graded

plates. A series of plate impact experiments were conducted with FGM specimens,

and these experiments will be discussed at length in Chapter V. A key finding in

the impact tests was that the FGM plate specimens used in the experiments behaved

nearly linear-elastic to failure. Additionally, the impact velocity was relatively low

and the plate loading occurred over a sufficiently long period of time that global de-

formations of the plate dominated the net impact response of the plate. Given these

findings, discussed in the later chapters of this dissertation, the composite plate the-

ory of this section will be limited to the realm of linear-elastic, small-strain, global

structural dynamics. The localized wave solution to the impact problem will not be

considered in this work. Concepts in rectangular plates will be presented first, fol-

lowed by the same concepts applied to circular plates. The theory in this section

will be referred to frequently throughout the remainder of this dissertation and will

play an important role in the analytical treatment of the impact tests in Chapters

VII-VIII.

3.2.1 Rectangular Flat Plates. The theory of thin plates and shells is well-

developed, and the reader is referred to Timoshenko & Woinowsky-Krieger [124],

Palazotto & Dennis [88], Ugural [125], Soedel [119], and Reddy [100] for complete
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development of the theory from first principles. Only the equations and theory directly

relevant to understanding this research will be included and these are summarized

from the listed references as appropriate for brevity.

The assumptions that govern classical plate theory (CPT) of isotropic thin

plates, attributed generally to Kirchhoff, are as follows:

1. The deflection of the mid-surface of the plate is small compared to its thickness.

2. The midplane of the plate remains unstrained subsequent to bending.

3. Plane sections initially normal to the mid-surface of the plate remain plane and

normal to that surface after bending.

4. The stress normal to the midplane is small compared to the other stress compo-

nents and can be neglected (except locally in the case of a highly concentrated

load).

Consider an isotropic plate whose mid-surface occupies the xy plane at z = 0

in Cartesian coordinates with total thickness h (thickness extends from z = −h/2 to

z = +h/2). In CPT, the displacement field of the plate is assumed to be

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x

v(x, y, z, t) = v0(x, y, t)− z
∂w0

∂y

w(x, y, z, t) = w0(x, y, t) (3.29)

u, v, and w are the displacements in the x, y, z directions, respectively, and the

subscript 0 denotes the displacement of the mid-surface. The displacement field of

the plate is illustrated in Figure 3.2. In the absence of in-plane extensional loads, u0

and v0 are zero in these displacement equations (per assumption 2 of CPT). Now, the
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strain-displacement relations from linear elasticity are:

εxx =
∂u

∂x

εyy =
∂v

∂y

εzz =
∂w

∂z

γxy =

(
∂u

∂y
+

∂v

∂x

)

γxz =

(
∂w

∂x
+

∂u

∂z

)

γyz =

(
∂w

∂y
+

∂v

∂z

)
(3.30)

εii are the normal strains and γij are the engineering shear strains. The normal strain

εzz and the transverse shear strains γxz and γyz are required to be zero according to

CPT assumptions 3 and 4. The form of the displacement field in (3.29) is to ensure

that these strains are zero and satisfy assumptions 3 and 4. Instead of assuming

the displacement field in (3.29), one can begin with the strain-displacement relations

(3.30), set εzz, γxz, and γyz equal to zero, then integrate the three equations to obtain

(3.29).

Applying the strain-displacement equations to the displacement field results in

εxx =
∂u0

∂x
− z

∂2w0

∂x2

εyy =
∂v0

∂y
− z

∂2w0

∂y2

εzz = 0

γxy =
∂u0

∂y
+

∂v0

∂x
− 2z

∂2w0

∂x∂y

γxz = −∂w0

∂x
+

∂w0

∂x
= 0

γyz = −∂w0

∂y
+

∂w0

∂y
= 0

(3.31)

In the case of thick plates, assumption 3 (and assumption 4 in certain cases) no

longer applies and the transverse strains are not necessarily zero. A modified theory,

called shear-deformable plate theory, assumes the shape of the plane sections initially
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Figure 3.2: Visual comparison of displacement fields of (a)
classical plate theory & (b) first-order shear deformation theory
(adapted from [100]).
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normal to the mid-surface after bending occurs. The first-order shear deformable

plate theory (FST) developed primarily by Mindlin [80] and Reissner [104] relaxes

assumption 3 of CPT by stating instead that plane sections initially normal to the

mid-surface of the plate remain plane but not necessarily normal to that surface after

bending. The displacement field for FST is

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)

w(x, y, z, t) = w0(x, y, t) (3.32)

where φ denotes rotation of the transverse normal and φx and φy are rotations of the

transverse normal about the y and x-axes, respectively. The displacement field of

FST is illustrated in Figure 3.2 along with that associated to CPT. The normal strain

εzz in FST is assumed to be zero by assumption 4 but the relaxation of assumption

3 implies that the transverse shear strains γxz and γyz are now non-zero. The form

of the displacement field in (3.32) is to ensure that these conditions are satisfied.

Instead of assuming the displacement field in (3.32), one can begin with the strain-

displacement relations (3.30), set εzz = 0, γxz & γyz equal to a function of in-plane

coordinates (x,y), then integrate the three equations to obtain (3.32). The quantities

z φx and z φy have positive signs here to account for the fact that the shear strains

are non-zero in FST. The negative sign in front of the quantities z (∂w0/∂x) and z

(∂w0/∂y) in (3.29) is a consequence of the assumption that the shear strains are zero.

The displacement field of FST in (3.32) can be applied to CPT noting that

φx → −∂w0

∂x
, φy → −∂w0

∂y

applies as a plate becomes sufficiently thin to allow the assumptions of CPT for

analysis purposes.
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Returning to the strain-displacement relations of (3.30), the strains in FST now

take the form:

εxx =
∂u0

∂x
+ z

∂φx

∂x

εyy =
∂v0

∂y
+ z

∂φy

∂y

εzz = 0

γxy =
∂u0

∂y
+

∂v0

∂x
+ z

(
∂φx

∂y
+

∂φy

∂x

)

γxz =
∂w0

∂x
+ φx

γyz =
∂w0

∂y
+ φy

(3.33)

Comparing the relations (3.31) to (3.33), the obvious difference from CPT is that the

transverse shear strains are now non-zero. In fact, since the transverse shear strains

γxz and γyz are only functions of x and y in spatial coordinates, their values will be

constant through the thickness of the plate at any local (x, y, z) coordinate. Given

that this is the case, the transverse shear stresses will also be constant. In beam

theory, a shear-deformable beam has a parabolic stress distribution. The transverse

stress distribution through a shear-deformable plate is essentially the same. Thus,

the FST for plates needs to be corrected to account for the discrepancy. The use of

shear correction factors to accomplish this will be discussed later. Higher-order shear

deformable theories have been developed to account for the parabolic distribution in

stress [132], [100]. The displacement field used to describe the plate deformation is

more complicated with higher-order theories yet is generally much more accurate for

thick plates. First and higher-order shear deformable theories have been developed ex-

tensively by J. N. Reddy for many applications, including composite and functionally

graded materials (see [103], [132], [98], [99], and [100]).

Another note regarding the strain relations in (3.31) and (3.33): the in-plane

strains (εxx, εyy, γxy) have terms containing u0 and v0. These terms relate the effects

of the straining of the mid-surface of the plate to the overall in-plane strains. The

remaining terms in these expressions for the in-plane strains are related to the bending
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curvature of the plate. In a purely bending analysis, the mid-surface deflections u0 and

v0 would be zero and thus only the terms related to the bending curvatures remain.

It is therefore convenient to express the strains in (3.31) and (3.33) in the following

manner:





εxx

εyy

γxy

γxz

γyz





=





∂u0
∂x
∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

∂w0
∂x

+ φx

∂w0
∂y

+ φy





+ z





∂φx

∂x
∂φy

∂y
∂φx

∂y
+

∂φy

∂x

0

0





=





ε0
xx

ε0
yy

γ0
xy

γxz

γyz





+ z





ε1
xx

ε1
yy

γ1
xy

0

0





(3.34)

The superscripts 0 and 1 on the in-plane strain terms refer to the strain effects related

to mid-surface extensions and bending curvatures, respectively. The transverse shear

strains are generally treated separately and thus have no superscripts. Again, the

relations in (3.34) apply to both CPT and FST noting that

φx → −∂w0

∂x
, φy → −∂w0

∂y

as a plate becomes sufficiently thin to allow the assumptions of CPT for analysis

purposes.
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For a linear-elastic three-dimensional state of stress, the relationships between

stress and strain for an isotropic material are given by the following relations:

εxx = +
1

E
[σxx − ν (σyy + σzz)]

εyy = +
1

E
[σyy − ν (σxx + σzz)]

εzz = +
1

E
[σzz − ν (σxx + σyy)]

γxy =
σxy

G

γxz =
σxz

G

γyz =
σyz

G

(3.35)

Assumption 3 from CPT implies that σzz is zero. The stress-strain relations for an

isotropic plate assuming CPT are then simplified to

σxx =
E

1− ν2
(εxx + νεyy)

σyy =
E

1− ν2
(εyy + νεxx)

σxy = Gγxy (3.36)

The stress-strain relations for an isotropic plate assuming FST are

σxx =
E

1− ν2
(εxx + νεyy)

σyy =
E

1− ν2
(εyy + νεxx)

σxy = Gγxy

σxz = Gγxz

σyz = Gγyz (3.37)

The stresses in the plates can be integrated over the thickness of the plate to produce

resultants (per unit width) for in-plane extensional & shear forces (N), bending &
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twisting moments (M), and vertical shear forces (Q) governed by





Nxx

Nyy

Nxy





=

∫ h/2

−h/2





σxx

σyy

σxy





dz (3.38)





Mxx

Myy

Mxy





=

∫ h/2

−h/2





σxx

σyy

σxy





z dz (3.39)





Qx

Qy



 =

∫ h/2

−h/2





σxz

σyz



 dz (3.40)

The integral equations (3.38)-(3.40) are applicable to both CPT and shear deformable

plate theories. Note that in CPT, σxz and σyz are zero and thus it would seem

intuitive that the vertical shear force resultants Q are also zero. This is not the case,

in fact, expressions for the vertical shear resultants are obtained from the equations

of equilibrium governing the plate behavior and cannot be neglected. In FST, a shear

correction factor is applied to equation (3.40) to account for the discrepancy between

the constant value of shear stress through the thickness in FST versus the actual

parabolic distribution of stress through the thickness:





Qx

Qy



 = Ks

∫ h/2

−h/2





σxz

σyz



 dz (3.41)

Where Ks is the shear correction factor taken generally to be 5/6.
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Substituting (3.34) into the stress-strain relations (3.37) and taking the results

and applying them to (3.38)-(3.40), one can write the result in the following form:





Nxx

Nyy

Nxy

Mxx

Myy

Mxy





=




A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66








ε0
xx

ε0
yy

γ0
xy

ε1
xx

ε1
yy

γ1
xy





(3.42)





Qy

Qx



 =


 A44 A45

A45 A55








εyz

εxz



 (3.43)

The strains through the plate thickness are continuous. The stresses will be continuous

through the thickness for a plate with a single isotropic layer, but not necessarily so for

a plate with multiple layers of varying composition. Such a plate is shown in Figure

3.3. In this case, the strains remain linear through the plate thickness but the stresses

in each layer are determined by the material stiffnesses of each individual layer. For

a plate composed of n discrete isotropic layers, the material constants in the 6 x 6

array in (3.42) and the material constants in the 2 x 2 array in (3.43) are given by:

Aij =
n∑

k=1

(
Q̄ij

)
k
(zk − zk−1) =

n∑

k=1

(
Q̄ij

)
k
tk (3.44)

Bij =
1

2

n∑

k=1

(
Q̄ij

)
k

(
z2

k − z2
k−1

)
=

n∑

k=1

(
Q̄ij

)
k
tkz̄k (3.45)

Dij =
1

3

n∑

k=1

(
Q̄ij

)
k

(
z3

k − z3
k−1

)
=

n∑

k=1

(
Q̄ij

)
k

(
tkz̄

2
k +

t3k
12

)
(3.46)

Amn = Ks

n∑

k=1

(
Q̄mn

)
k
(zk − zk−1) = Ks

n∑

k=1

(
Q̄mn

)
k
tk (3.47)

where tk is the thickness of an individual layer k; zk and z̄k are illustrated in Figure

3.3 in the given coordinate system; i, j = 1, 2, 6; and m, n = 4, 5. The [Aij] matrix
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is called the in-plane stiffness matrix; the [Bij] matrix is called the bending-extension

coupling matrix; the [Dij] matrix is called the bending stiffness matrix; and the [Amn]

matrix is called the transverse shear stiffness matrix and is not used with CPT. The

stiffnesses Q̄ij and Q̄mn for an individual isotropic layer are given by:

Q̄11 = Q̄22 =
E

1− ν2
(3.48)

Q̄12 = νQ̄11 (3.49)

Q̄66 =
E

2(1 + ν)
(3.50)

Q̄44 = Q̄55 =
E

2(1 + ν)
(3.51)

Q̄16 = Q̄26 = Q̄45 = 0 (3.52)

E is the modulus of elasticity, ν is Poisson’s ratio, and Ks is a shear correction

factor. In the case of a functionally graded material with a continuous distribution of

material through-the-thickness of the plate (i.e., E and ν are functions of the thickness

coordinate z such that E(z) and ν(z)) , the elements of the [Aij], [Bij], [Dij], and

[Amn] matrices are determined by replacing the summations of equations (3.44)-(3.47)

to an integral operation over the thickness h of the plate:

(Aij, Bij, Dij) =

∫ h
2

−h
2

Q̄ij

(
1, z, z2

)
dz (3.53)

Amn = Ks

∫ h
2

−h
2

Q̄mndz (3.54)

The last remaining item is to determine the displacement equations that fit into

the framework of (3.29) and (3.32). Once the displacement equations for u0, v0, and

w0 are known, the stresses and strains in the plate can be determined. It happens

that a plate subject to bending is of primary interest in this work, and thus u0 and

v0 are set to zero. The equations of motion for a plate subject to bending are derived

from an energy approach involving Hamilton’s Principle with strain energy, kinetic

energy, and work from external forces and applying the calculus of variations [100].
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Figure 3.3: Coordinate notation for through-thickness layup
of composite plate.

For a thin plate under the assumptions of CPT, the equation of motion is:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+ ρh

∂2w

∂t2
= p (3.55)

p = p(x, y, t) is a transversely distributed load that is a function of x, y, and t and D

is the flexural rigidity of the plate given by

D =
Eh3

12 (1− ν2)
(3.56)

For static analyses, the derivative with respect to time in (3.55) disappears. The

equations of motion for a plate under FST assumptions are more complicated since

the effects of φx and φy rotations must be accounted for. For the case of bending only,
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the three necessary equations of motion are (first developed by Mindlin [80]):

−KsGh

(
∂2w

∂x2
+

∂2w

∂y2
+

∂φx

∂x
+

∂φy

∂y

)
+ ρh

∂2w

∂t2
= p (3.57)

D

2

[
(1− ν)

(
∂2φx

∂x2
+

∂2φx

∂y2

)
+ (1 + ν)

∂

∂x

(
∂φx

∂x
+

∂φy

∂y

)]

−KsGh

(
∂w

∂x
+ φx

)
− ρh3

12

∂2φx

∂t2
= 0 (3.58)

D

2

[
(1− ν)

(
∂2φy

∂x2
+

∂2φy

∂y2

)
+ (1 + ν)

∂

∂y

(
∂φx

∂x
+

∂φy

∂y

)]

−KsGh

(
∂w

∂y
+ φy

)
− ρh3

12

∂2φy

∂t2
= 0 (3.59)

Equation (3.57) accounts for the transverse deflection and equations (3.58) and (3.59)

account for the rotations owing to shear. Again, equations (3.57)-(3.59) simplify as

a shear-deformable plate becomes sufficiently thin to allow the assumptions of CPT;

that is:

φx → −∂w0

∂x
, φy → −∂w0

∂y

The differential equations of motion governing CPT, (3.55), and FST, (3.57)-(3.59),

can be solved once boundary conditions are applied. In the case of CPT, (3.55) is

solved for w. In the case of FST, (3.57)-(3.59) are solved simultaneously for w, φx,

and φy.

3.2.2 Circular Plates Subject to Axisymmetric Bending. The general ele-

ments of plate theory discussed in the previous section provide some insight into the

behavior of plates given assumptions of classical plate theory and the first-order shear

deformable plate theory. The plate impact experiments conducted for this research

(presented in Chapter V) used functionally graded plates installed into a specially

designed fixture with a circular opening. It will be shown in Chapter V that the

plates in the fixture tended to behave very closely to a thick circular plate with a

simply-supported boundary condition along the circumference of the circular open-
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ing. Additionally, the plates were loaded with a central impact load normal to the

ceramic-rich surface of the plate. The plate, under these loading conditions, tended

to behave very nearly as a plate with a concentrated load at the center that follows

the assumptions of axisymmetric bending. The theory behind the behavior of circu-

lar plates in axisymmetric bending is essentially the same as with rectangular plates,

yet some important simplifications can be made that are very convenient for analysis

purposes.

If a plate has a circular geometry with radius a, then it is advantageous to

consider the plate in polar/cylindrical coordinates. The familiar relations between

Cartesian and cylindrical coordinates (r,θ,z), namely x = r cos θ, y = r sin θ, z = z,

allow the CPT displacement field (3.29) to be rewritten as

ur(r, θ, z, t) = u0(r, θ, t)− z
dw0

dr

uθ(r, θ, z, t) = v0(r, θ, t)− z

(
1

r

dw0

dθ

)

uz(r, θ, z, t) = w0(r, θ, t) (3.60)

u again is the displacement along a given coordinate direction (subscripts r, θ, and

z). The FST displacement field (3.32) is similarly rewritten

ur(r, θ, z, t) = u0(r, θ, t) + zφr(r, θ, t)

uθ(r, θ, z, t) = v0(r, θ, t) + z

(
1

r
φθ(r, θ, t)

)

uz(r, θ, z, t) = w0(r, θ, t) (3.61)

Given axisymmetric loads only, the displacement field for CPT is more conveniently

expressed

ur(r, z, t) = u0(r, t)− z
dw0

dr

uz(r, z, t) = w0(r, t) (3.62)
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and in FST

ur(r, z, t) = u0(r, t) + zφr(r)

uz(r, z, t) = w0(r, t) (3.63)

Note that the key assumption of a plate exhibiting axisymmetric behavior is that

the displacements are independent of the angular coordinate θ and uθ is zero. The

strain-displacement in polar coordinates are [108]:

εrr =
∂ur

∂r

εθθ =
1

r

∂uθ

∂θ
+

ur

r

εzz =
∂uz

∂z

γrθ =
1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

γθz =
1

r

∂uz

∂θ
+

∂uθ

∂z

γrz =
∂ur

∂z
+

∂uz

∂r
(3.64)

Given axisymmetric assumptions these relations simplify dramatically. In CPT, the

only nonzero strains are εrr and εθθ. In FST, εrr and εθθ again are nonzero and εrz is

the only nonzero shear strain. It is convenient to express the strains in the following

manner:





εrr

εθθ

γrz





=





∂u0
∂r
u0
r

∂w0
∂r

+ φr





+ z





∂φr

∂r
φr
r

0





=





ε0
rr

ε0
θθ

γrz





+ z





ε1
rr

ε1
θθ

0





(3.65)
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The linear-elastic stress-strain relations in cylindrical coordinates are:

σrr =
E

1− ν2
(εrr + νεθθ)

σθθ =
E

1− ν2
(εθθ + νεrr) (3.66)

The stress-strain relations for an isotropic plate assuming FST are

σrr =
E

1− ν2
(εrr + νεθθ)

σθθ =
E

1− ν2
(εθθ + νεrr)

σrz = Gγrz (3.67)

The force, moment, and shear resultants are determined by





Nrr

Nθθ



 =

∫ h/2

−h/2





σrr

σθθ



 dz (3.68)





Mrr

Mθθ



 =

∫ h/2

−h/2





σrr

σθθ



 z dz (3.69)

{
Qrz

}
=

∫ h/2

−h/2

{
σrz

}
dz (3.70)

Substituting (3.65) into the stress-strain relations (3.67) and taking the results

and applying them to (3.68)-(3.70), one can write the result in the following form:





Nrr

Nθθ

Mrr

Mθθ





=




A11 A12 B11 B12

A12 A22 B12 B22

B11 B12 D11 D12

B12 B22 D12 D22








ε0
rr

ε0
θθ

ε1
rr

ε1
θθ





(3.71)

{
Qr

}
=

[
A55

]{
εrz

}
(3.72)
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The Aij, Bij, Dij, and Amn in (3.71) and (3.72) are determined precisely the same as

in (3.44)-(3.47) using the corresponding Q̄ij and Q̄mn in equations (3.48)-(3.52).

The CPT partial differential equation of motion (3.55) in cylindrical coordinates

is given by

D

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
+ ρh

∂2w

∂t2
= p (3.73)

Equation (3.73) can be simplified in the case of axisymmetrical bending, in which case

the applied load and transverse deflection are assumed to be independent of the angle

θ:

D

(
d2

dr2
+

1

r

d

dr

)(
d2w

dr2
+

1

r

dw

dr

)
+ ρh

∂2w

∂t2
= p (3.74)

The governing equations, without derivation, for a circular plate subject to

bending with the assumptions of FST are given as [119]:

−KsGh

[
∂

∂r

(
r
∂w

∂r

)
+

∂

∂θ

(
1

r

∂w

∂θ

)
+

∂

∂r
(rφr + φθ)

]

+rρh
∂2w0

∂t2
= r p (3.75)

D(1− ν)

[
(k11 − k22) +

1

2

∂k12

∂θ
+

r

1− ν

(
∂k11

∂r
+ ν

∂k12

∂r

)]

−KsGhr

(
∂w

∂r
+ φr

)
− r

ρh3

12

∂2φr

∂t2
= 0 (3.76)

D(1− ν)

[
k12 +

r

2

∂k12

∂r
+

1

1− ν

(
∂k22

∂θ
+ ν

∂k11

∂θ

)]

−KsGhr

(
1

r

∂w

∂θ
+ φθ

)
− r

ρh3

12

∂2φθ

∂t2
= 0 (3.77)

where

k11 =
∂φr

∂r
(3.78)

k22 =
1

r

∂φθ

∂θ
+

φr

r
(3.79)

k12 = r
∂

∂r

(
φθ

r

)
+

1

r

∂φr

∂θ
(3.80)

51



Equation (3.75) accounts for the transverse deflection and equations (3.76) and (3.77)

account for the rotations owing to shear. Once again, equations (3.75)-(3.77) simplify

as a shear-deformable plate becomes sufficiently thin to allow the assumptions of

CPT; that is:

φr → −∂w0

∂r
, φθ → −∂w0

∂θ

The differential equations of motion governing CPT, (3.73), and FST, (3.75)-(3.77),

can be solved once boundary conditions are applied. In the case of CPT, (3.73) is

solved for w. In the case of FST, (3.75)-(3.77) are solved simultaneously for w, φr,

and φθ. Equations (3.75)-(3.77) greatly simplify in the case of axisymmetric bending

since all the contributions with respect to θ disappear and φθ disappears as well.

3.3 Closing

In this chapter, material models commonly used in FGM analyses have been

discussed. A few of these models will be applied to analytical and computational

models of the plate impact experiments discussed later in this dissertation. Basics in

linear-elastic plate theory have also been presented to build a solid foundation from

which the FGM plate impact problem can be further addressed, given that the FGM

plates behaved in a nearly linear-elastic fashion during impact testing (discussed in

Chapter V). The wave solution to the impact problem has not and will not be consid-

ered; the reasons for this will be made more clear in subsequent chapters. The theory

presented here will be frequently referred to in the remaining chapters, and some of

the plate theory concepts will be expanded in later chapters in order to effectively

characterize the response of FGM plates under low-velocity, low- to medium-energy

impact loads.
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IV. Titanium-Titanium Boride FGM System

At this point, a literature review in FGM plate studies and the classic analysis

methods for homogeneous and composite plates have been presented. The

literature review demonstrated that deficiencies in the study of FGM composites

exist in (1) experimental data to validate claims and (2) characterizing the response

of graded plates and shells under impact loading. One of the key hallmarks of this

study is an experimental method by which the impact response of FGM plates can be

characterized. The first step in this process was to obtain specimen FGM plates that

could be tested in the laboratory.

Perhaps the best reason that very little experimental work on FGMs has been

performed is their limited availability. The short supply of FGMs can be attributed to

the fact they are notoriously difficult to produce and thus can be extremely expensive

compared to other available engineering materials. Polymer-based FGMs have been

developed in the laboratory relatively inexpensively in the past for these very rea-

sons; see Lambros et al. [64], [65] and Parameswaran and Shukla [91]. Metal-ceramic

FGM systems are of greater interest here since a metal-ceramic FGM system would

more likely be used as a thermal protection system than a polymer-based FGM. The

technology for producing metal-ceramic FGM systems has emerged over the past two

decades (see [122] and [63]), however, the technology to produce these composites

needs to be enhanced before FGMs will be more readily available to design engineers.

The FGM system chosen for the experiments in this research was a titanium-

titanium boride metal-ceramic material that is manufactured in industry. The purpose

of this chapter is to discuss the characteristics of this particular FGM system in

detail. Knowledge of the titanium (Ti) and titanium boride (TiB) constituents and

the mixture of the two materials provides valuable insight as the FGM plates are

subjected to impact loading.
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4.1 Manufacturing Titanium-Titanium Boride FGMs

The FGM system that will be used in this research is a titanium-titanium boride

system developed by BAE Systems-Advanced Ceramics in Vista, California. BAE

Systems uses a proprietary “reaction sintering” process to produce the Ti-TiB FGMs.

Titanium and titanium diboride (TiB2) are combined in powder form in a graphite

die according to the required volume fraction ratios through the FGM plate thickness.

A catalyzing agent is applied to the construction, and the powders are subjected to

extreme temperature (near the melting point of titanium) and pressure in a vacuum or

inert gas environment. The catalyzing agent reacts with the titanium and titanium

diboride powders to form titanium boride that crystalizes in a needle morphology.

In the reaction process, almost no residual TiB2 remains in the FGM. Through this

process, the powders adhere together and the Ti-TiB FGM plate is the final product

[4]. A microscopic view of a Ti-TiB plate can be seen in Figure 4.1. The process can

be used to construct monolithic composites of constant volume fraction or composites

graded along a given dimension. The change in composition of the constituents along

a dimension is discrete and not truly continuous, although the length over which a

discrete change occurs can be very small and can closely approximate a continuous

function. In Figure 4.1, the grading from 100% Ti to 15% Ti-85% TiB occurred over

seven discrete jumps in composition giving the plate a layered configuration.

4.2 Titanium, Titanium Boride Constituents

In this section, some material details associated with the Ti and TiB constituents

are presented. With any multi-constituent FGM system, it is extremely important

to understand well the individual constituent materials combined in the FGM con-

struction. Knowledge about the individual constituents provides insight into the

combination of materials and often allows conclusions to be drawn as the response of

the mixture is studied.
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Figure 4.1: Microscopic view of Ti-TiB FGM [26]. TiB rich
areas are near the top surface; Ti rich areas are near the bottom
surface.

4.2.1 Titanium. Titanium is a metallic element that is arranged in a

hexagonal-close-packed (HCP) crystal microstructure at room temperature (com-

monly called α-phase or α-Ti). The microstructure of Ti transforms to a body-

centered-cubic (BCC) crystal structure at 883 ◦C (commonly called β-phase or β-

Ti) [118]. It is known for its excellent corrosion resistance in many environments and

is therefore a desirable material used frequently in the aerospace industry. Titanium

is readily combined and commonly alloyed with various elements such as aluminum,

vanadium, zirconium, and iron to improve mechanical properties for various applica-

tions [10]. For this research, we are primarily interested in commercially pure titanium

(CP-Ti), generally considered composed of 99% Ti or better. CP-Ti is typically des-

ignated in three grades by the American Society for Testing and Materials (ASTM),

specifically ASTM grades 1,2, and 7. The grade designation is assigned based on the

level of impurities present in the material.

Table 4.1 gives typical properties for CP-Ti at room temperature. Mechanical

properties for the three common ASTM grades do not vary greatly, and the values in

the table are sufficient for most design purposes. As with most engineering materials,
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Figure 4.2: Hexagonal close-packed crystal structure of tita-
nium at room-temperature. The dimensions of the crystal shown
are a = 295 picometers and c = 468 picometers (1 picometer =
1 x 10−12 meters) [40].

however, the mechanical properties are a function of the operating temperature. Since

the Ti-TiB FGMs were studied at room temperature in this work, all properties will

be assumed as temperature-independent for simplification.

Where impact problems are concerned, the plastic region of the stress-strain

curve is very important, especially given that even low-energy impacts can generate

stresses high enough to induce permanent deformation local to the contact area. The

Table 4.1: Typical material property data for com-
mercially pure titanium at room temperature [86], [4].

Property Value Units

Density, ρ 4512 kg/m3

Young’s Modulus, E 110.0 GPa
Poisson’s Ratio, ν (minimum) 0.24
Shear Modulus, G 41.37 GPa
Yield Stress, σy 379.2 MPa
Ultimate Stress, σult 517.1 MPa
Coefficient of Thermal Expansion, α 9.18 µm/(m-K)
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temperature and strain-rate sensitivity of the plastic flow stress, ultimate stress, and

material plastic modulus also become very important to impact studies, especially

given applications of thermal protection in high-temperature environments. Effects

such as these did not feature themselves in the plate impact experiments conducted in

this work (discussed in Chapter V), however they must be considered in more general

impact problems where higher velocity impacts potentially induce localized, strain-

rate sensitive wave effects. In this context, a few studies into the high strain-rate

response of Ti are worth mentioning briefly to give insight should the Ti constituent

be used in a thermal protection FGM system. A study by Meyers et al. [79] in 1994

attempted to ascertain the strain-rate sensitivity and microstructure development of

commercially pure α-Ti under plastic deformation. Strain-rate data was obtained in

the regime between 2.0 x 10−4 and 7.6 x 103 s−1. The data collected indicated that the

plastic flow stress of α-phase CP-Ti increased linearly on a logarithmic scale for the

given strain rates below 103 s−1. At very high strain rates, above 103 s−1, the trend

changes from linear increase to nearly parabolic increase (on a logarithmic scale) in

plastic flow stress in qualitative form. Chichili et al. [27] in 1998 performed a highly

comprehensive study of the strain-rate sensitivity of commercially pure titanium over

the range of 10−5 to 105 s−1 with temperatures ranging between 77 and 298 K. These

tests required use of a servohydraulic testing machine, a compression Hopkinson bar,

and a pressure-shear flyer plate impact apparatus. The experimentally determined

flow stress data matched well with the results obtained by Meyers et al. [79]. Consti-

tutive modeling was performed using the Kocks-Mecking constitutive model (a highly

complex physics-based constitutive model; see [78], [44], [43]) for strain rates up to

104 s−1 that captured the monotonic loading behavior of the α-Ti very well. Nemat-

Nasser et al. [84] conducted an important experimental study into commercially pure

titanium in 1999 where a large body of true stress-strain curves and data were gen-

erated for compression strain-rates up to 8000 s−1 and temperatures between 77 and

1000 K. The authors concluded that physics-based constitutive models must include

contributions from crystal-microstructure effects to model the experimental data ef-
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fectively. Two other similar studies in high-temperature, high strain-rate response of

titanium alloys were conducted by Lee and Lin [70] and Rosen et al. [107].

4.2.2 Titanium Boride. Titanium boride (TiB) is the ceramic constituent

used in the FGM system developed by BAE Systems. The development of titanium

boride for use in titanium metal-matrix composites (MMCs) has only come about in

recent years. TiB reinforcement can be produced in situ by solid state reaction using

powder metallurgy techniques (BAE Systems uses the reaction sintering technique to

produce their Ti-TiB MMCs and FGMs). Powders of commercially pure titanium

and TiB2 are combined in a die according to the volume ratio design configuration

required. The powder construction is then subjected to extremely high pressures

and temperatures (just below the melting point of titanium) in a vacuum or inert-

gas environment. The powders in this high-temperature, compressed environment

adhere together and the composite takes its final form and is cooled [4]. While the

precise details of the manufacturing process are proprietary to BAE Systems, the novel

technique of constructing Ti-TiB composites in this fashion has been documented in

the literature (see Panda and Ravichandran [89] for a list of publications in this area).

TiB2 and TiB do not occur naturally and must be artificially processed. The following

chemical reaction describes the process [89]:

Ti + TiB2 → 2 TiB (4.1)

Basic material properties for TiB are given in Table 4.2.

The crystal structure of TiB is B27 class orthorhombic, established by Decker

and Kasper in 1954 [36]. The fundamental building block of TiB crystal structures

is essentially a trigonal prism with titanium atoms at the corners of the prism and a

boron atom at the center of the prism, shown in Figure 4.3. The trigonal prisms stack

in columnar arrays connected at their edges only to form the orthorhombic crystal

structure. An orthorhombic crystal structure is essentially a rectangular, right prism

with unequal sides a, b, and c. A single unit cell contains four titanium atoms and

58



Table 4.2: Typical material property data for tita-
nium boride at room temperature [4].

Property Value Units

Density, ρ 4630 kg/m3

Young’s Modulus, E 370.0 GPa
Poisson’s Ratio, ν (minimum) 0.14
Shear Modulus, G 162.3 GPa
Coefficient of Thermal Expansion, α 9.00 µm/(m-K)

four boron atoms with dimensions a = 612 picometers, b = 306 picometers, and c =

456 picometers (1 picometer = 1 x 10−12 meters) [109]. The crystal structure formed

during the solid state reaction contributes heavily to the needle morphology charac-

teristic of TiB within MMCs. An extensive study of the microstructure and phases in

Ti-TiB MMCs produced by the described reaction sintering was conducted by Sahay

et al. [109] in 1999. In their study, Ti-TiB monolithic MMCs were constructed with

various volume fraction ratios of Ti and TiB2 powders. After the monolithic samples

were manufactured, the authors used x-ray diffraction techniques to determine the

volume fraction ratio of Ti and TiB formed through the process as well as the volume

fraction of TiB2 remaining untransformed into TiB. A sample of the results is shown

in Table 4.3. A few important conclusions were made. At low volume fractions of

TiB (up to V f = 0.30), TiB whiskers are long, needle-shaped and randomly dispersed

throughout the Ti matrix. At medium to high volume fractions of TiB (up to V f =

0.86), colonies of densely-packed TiB whiskers formed. At very high volume fractions

of TiB (V f > 0.86), the TiB formed a very coarse, elongated structure with very

few whiskers present. Finally, at the high volume fractions of TiB, residual TiB2 was

detected in the samples not present in samples with lower volume fractions of TiB.

The choice of TiB as reinforcement in Ti-MMCs has several distinct advantages

over other possible titanium compounds [89], [97]. First, there is a dramatic increase in

strength when TiB whiskers are added to titanium versus titanium by itself. Second,

the coefficients of thermal expansion and mass densities of the two materials are very

near in value, thus reducing localized thermal stresses from mismatching materials in
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Figure 4.3: Trigonal prism building block for the orthorhom-
bic crystal structure of TiB [109].

Table 4.3: Composition data for Ti-TiB monolithic
composites manufactured by reaction sintering [109].

Initial Mixture Manufactured Composite
V f Ti V f TiB2 V f Ti V f TiB V f TiB2

0.882 0.118 0.70 0.30 0.00
0.763 0.237 0.45 0.55 0.00
0.645 0.355 0.27 0.73 0.00
0.526 0.474 0.08 0.86 0.06
0.408 0.592 0.00 0.92 0.08
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an elevated thermal environment. Finally, the interface between Ti and TiB phases

is clean with almost no residual reaction products remaining during TiB whisker

formation. Other potential reinforcements, such as SiC, Al2O3, and Si3N4 do not

have this property as reaction products can form at phase interfaces and have adverse

effects on material properties.

TiB2 and TiB are notoriously brittle materials that exhibit almost no plasticity.

Properties for TiB are not easily obtained because of the fact that TiB is produced

as a reaction product within the Ti-MMCs and is not easily isolated into stand-

alone specimens that can be mechanically tested on a macroscopic scale. Efforts

have been made by Atri et al. [9] and Ravichandran et al. [97] to isolate the elastic

properties of TiB by testing monolithic Ti-MMC samples with various volume fraction

ratios of titanium to titanium boride and inversely determining the necessary TiB

material properties using various material mixture formulas. Also noteworthy is a

report in 2006 by Panda and Ravichandran [90] where anisotropic elastic constants

were determined for TiB using atomic physics with respect to a single crystal of TiB.

Later, a polycrystal of Ti-TiB MMC was simulated using the same atomic model and

elastic material data was obtained for various mixtures of Ti and TiB. It was found

that the atomic theoretical models predicted elastic constants comparable to those

obtained experimentally in [9].

4.3 Ti-TiB MMC and FGM Specimens

Ten plate specimens of various composition were obtained for the FGM plate

impact experiments (discussed in more detail in Chapter V):

1. Two plates were monolithic, composed of 100% Ti - 0% TiB

2. Two plates were monolithic, composed of 85% Ti - 15% TiB

3. Two plates were monolithic, composed of 15% Ti - 85% TiB

4. Four plates were FGM, composed of Ti-TiB graded over seven layers

61



Figure 4.4: Illustration of layers in FGM plate specimens.

Table 4.4: BAE Systems Ti-TiB FGM through-the-
thickness configuration of the plate specimens shown
in Figure 4.4.

Layer % Ti % TiB Thickness, cm

1 15 85 0.181
2 25 75 0.181
3 40 60 0.181
4 55 45 0.181
5 70 30 0.181
6 85 15 0.181
7 100 0 0.181

Each plate was 7.62 cm x 7.62 cm - 1.27 cm thick. The monolithic specimens were

to be used to give baseline material data for specific volume fraction combinations of

Ti and TiB that coincide with three of the seven compositional layers of the FGMs.

The FGMs, with seven layers of different volume fraction ratios of Ti to TiB, are

illustrated in Figure 4.4 with compositional data in Table 4.4. Scanning electron

microscope (SEM) photographs of the individual layers are shown in Figures 4.5-4.11

(courtesy of Mr. Brett Hauber, Air Force Research Laboratory). Titanium appears

as a light gray in the SEM photographs; titanium boride appears as a much darker

shade of gray. The SEM photographs show starkly how at lower volume fractions

the TiB constituent forms into needles embedded into a Ti matrix, while at higher

volume fractions of TiB the needles are less distinguishable and the TiB constituent

tends to coalesce into large colonies with coarse structure.
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Figure 4.5: Scanning electron microscope image of 100% Ti
(courtesy of Mr. Brett Hauber, AFRL).

Figure 4.6: Scanning electron microscope image of 85% Ti,
15% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).
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Figure 4.7: Scanning electron microscope image of 70% Ti,
30% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).

Figure 4.8: Scanning electron microscope image of 55% Ti,
45% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).
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Figure 4.9: Scanning electron microscope image of 40% Ti,
60% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).

Figure 4.10: Scanning electron microscope image of 25% Ti,
75% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).
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Figure 4.11: Scanning electron microscope image of 15% Ti,
85% TiB mixture (courtesy of Mr. Brett Hauber, AFRL).

A key part of this research will involve estimating the material properties of

the individual Ti-TiB mixtures. The properties of Ti are well-established while the

properties of TiB are not as well understood. Hill and Lin [55] compiled a table of

experimentally determined material properties for individual layers within a Ti-TiB

FGM where the volume fraction ratios of Ti to TiB are constant (based on the work

of Carpenter et al. [25]). The elastic properties published by these authors and Atri

et al. [9] are included with properties of Ti and TiB supplied by BAE Systems for

their FGM system [4] in Table 4.5. Predicted values for the material properties are

included in the tables using the classical rule-of-mixtures, the self-consistent material

model, and the Mori-Tanaka estimates (presented in the previous chapter). Recall

that the Mori-Tanaka estimates assumed that the TiB phase could assume either

spherical or needle shape, although the needle morphology is more characteristic of

the actual TiB phase in the MMCs and FGMs.
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Table 4.5: Elastic property data for Ti-TiB volume
ratios compared with predicted values from the clas-
sical rule-of-mixtures (ROM), self-consistent model
(SC), and the Mori-Tanaka (MT) estimates assuming
spherical (S) and needle (N) shaped TiB embedded in
a titanium matrix. Data from [4] was used to calculate
properties from the material models.

Configuration Reported ROM SC MT-S MT-N
%Ti %TiB Source E, GPa E, GPa E, GPa E, GPa E, GPa

100 0 [4] 110.0 110.0 110.0 110.0 110.0
100 0 [55] 106.9 110.0 110.0 110.0 110.0
100 0 [9] 117.7 110.0 110.0 110.0 110.0
85 15 [55] 120.1 149.0 131.6 138.8 137.4
70 30 [9] 163.0 188.0 159.0 170.2 167.6
68 32 [55] 139.4 193.2 163.1 174.6 171.9
53 47 [55] 162.2 232.2 198.1 209.7 206.2
46 54 [9] 211.0 250.4 216.8 227.3 223.7
38 62 [55] 193.7 271.2 239.9 248.5 244.9
31 69 [9] 269.0 289.4 261.6 268.2 264.7
21 79 [55] 247.6 315.4 294.6 298.2 295.3
15 85 [55] 274.3 331.0 315.4 317.4 315.0
0 100 [4] 370.0 370.0 370.0 370.0 370.0

Configuration Reported ROM SC MT-S MT-N
%Ti %TiB Source ν ν ν ν ν

100 0 [4] 0.340 0.340 0.340 0.340 0.340
100 0 [55] 0.340 0.340 0.340 0.340 0.340
100 0 [9] 0.335 0.340 0.340 0.340 0.340
85 15 [55] 0.310 0.310 0.319 0.310 0.312
70 30 [9] 0.290 0.280 0.294 0.281 0.284
68 32 [55] 0.276 0.276 0.291 0.278 0.281
53 47 [55] 0.246 0.246 0.261 0.249 0.252
46 54 [9] 0.250 0.232 0.246 0.235 0.239
38 62 [55] 0.216 0.216 0.228 0.219 0.223
31 69 [9] 0.220 0.202 0.212 0.205 0.209
21 79 [55] 0.182 0.182 0.188 0.185 0.188
15 85 [55] 0.170 0.170 0.174 0.173 0.175
0 100 [4] 0.140 0.140 0.140 0.140 0.140
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The predicted values for material constants show some agreement for high vol-

ume fractions of titanium but tend to diverge for higher concentrations of TiB. This

can be accounted for by one or more of the following points:

1. The properties for Ti and TiB shown in Table 4.5 and used to predict the

properties of mixtures are inaccurate, especially the properties of TiB.

2. The sintering process used to construct the FGMs and MMCs does not produce

a bond between constituent powders and whiskers sufficiently strong to assume

the properties of the powders/whiskers are the same as the aggregate.

3. The mathematical models used to predict the properties are inadequate for this

and possibly other metal-ceramic composites.

Also note that the data from Hill and Lin was found using layers from actual FGM

specimens while the results by Atri et al. were from monolithic samples of constant

volume fraction ratio. Byrd et al. [24] performed some static and dynamic bending

tests using Ti-TiB monolithic and graded beam specimens and found that the mono-

lithic beams had variability in properties that fit into a Gaussian distribution while

the properties of the FGMs had significantly more variability that seemed to fit into

a skewed distribution. The FGM experiments or the manufacturing process required

to obtain the FGM configurations can perhaps play a role in the discrepancy between

the estimates and the actual properties, although it is likely items 1-3 above play a

greater role. Obtaining correct material properties for the Ti-TiB mixtures will be a

central theme in later chapters.

4.4 Closing

Details associated with the Ti-TiB FGM system and its constituents have been

presented in this chapter. The Ti-TiB FGM system was chosen primarily because it

is one of the few metal-ceramic FGM systems available commercially. It is beyond the

scope of this work to perform a material-science oriented study into the Ti-TiB metal-

ceramic FGM system. Such studies must indeed be undertaken before any candidate
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FGM system is integrated as part of an aerospace vehicle’s TPS. Understanding the

basic properties and features of the FGM and its constituents is the first step in char-

acterizing the impact response of an FGM plate or shell structure; this first step has

been accomplished in this chapter for the Ti-TiB system studied in this work.
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V. FGM Plate Impact Experiments

The last three chapters presented important background information necessary

to set the stage for the specific research of effectively characterizing the im-

pact response of FGM plates. A pillar of this work was to devise and conduct a

series of impact experiments that could be used as a baseline against analytical and

computational predictions of FGM behavior under impact. Given the lack of experi-

mental data with functionally graded composites, the contribution of the experimental

technique and the data collected cannot be understated.

The first chief objective of this study (per the list of objectives in Chapter I) was

to design and conduct impact tests on metal-ceramic FGM plates in order to record

strain histories at various locations on the plate over the duration of the impact event.

The requirements to meet this objective can be summarized as follows:

1. Utilize a test apparatus that can deliver a low- to medium-energy impact to a

specimen under highly controlled, highly reproducible conditions.

2. Configure plate specimens such that analytical and computational comparisons

of the impact event can readily be made.

3. Provide sufficient instrumentation to characterize the impact event along with

the material response.

This chapter presents in detail how the FGM plate impact experiment was designed to

meet these requirements and the method for collecting data for studying the impact

response.

The experimental results from conducting these impact tests will also be pre-

sented. First, the plates were inspected using ultrasonic immersed through-transmission

scanning to assess whether or not any damage or defects exist in the Ti-TiB plates

prior to impact testing. Next, a series of ten impact tests using the Ti-TiB monolithic

and FGM plates were conducted. The results from the monolithic specimens provide

baseline tests for three of the seven individual mixtures of Ti-TiB that compose the

seven-layer FGM specimens. The results from the FGM specimens provide baseline
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results to test the validity of analytical and computational theories with respect to

FGM plates. Strain histories were successfully collected in eight of the ten tests; two of

the tests were unsuccessful due to specimen failure. The plates that survived the im-

pact tests were once again inspected using ultrasonic immersed through-transmission

scanning to assess whether or not significant damage was introduced after the plates

were impacted in the Dynatup. The data collected in these tests represents a signifi-

cant contribution to the field of study given almost no available test data with FGMs

and very little treatment of the impact response of FGMs.

5.1 Plate Impact Experiments and Set-Up

5.1.1 Test Hardware. This section will discuss the selection and design of

test hardware to meet the requirements in items 1 and 2 in the chapter introduction.

The three primary hardware components are: (1) the Dynatup apparatus, (2) the

plate specimen fixture, and (3) the plate specimens.

5.1.1.1 Dynatup Apparatus. Requirement 1 called to utilize a test

apparatus that can deliver a low- to medium-energy impact to a specimen under

highly controlled and reproducible conditions. The Dynatup apparatus is a device

that can meet this requirement exceptionally well. The Dynatup apparatus was orig-

inally developed by General Research Corporation (Santa Barbara, CA), now Instron

Corporation. A Dynatup apparatus (model GRC 8250) owned and operated by the

Air Force Research Laboratory, Air Vehicles Directorate (office symbol AFRL/RB)

at Wright-Patterson AFB, OH, is shown in Figure 5.1. The apparatus is designed to

deliver a gravity-driven vertical impact of variable energy to a specimen placed in a

fixture. The energy delivered to the test specimen is controlled by the height of the

load cell and tup above the specimen and the mass attached to the tup assembly.

Spring assists can be used to provide further potential energy to the system that is

converted to kinetic energy prior to impact. Various load cell tups can be used to

deliver the dynamic load to the specimen, depending on the needs of the test engineer.
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The Dynatup apparatus can be configured to deliver impact energies up to 442 Joules.

A set of pneumatic rebound brakes prevent a secondary impact from a rebound of the

tup and crosshead. A schematic of the Dynatup components is shown in Figure 5.2.

The sequence of events that occur during an impact test with the Dynatup can

be summarized as follows. A specific mass-velocity-impact energy is prescribed for

an experiment. A tup geometry for transferring the impact load to the specimen

is chosen. The impact test specimen is installed and secured at the base of the

Dynatup using a fixture appropriate to the test conditions. The mass and tup are

attached to the crosshead assembly, and this assembly is raised above the specimen

to a specific height directly correlated to the required velocity-energy prescription

for the test. If spring-assistance for additional velocity-energy above a gravity-driven

impact is required, the springs are compressed against the crosshead assembly using a

pneumatic press (the spring compression is dictated by a pneumatic pressure-velocity

relationship that must be determined a priori to testing). The system is armed and

the crosshead assembly is released from rest. The potential energy stored in the

crosshead assembly is converted to kinetic energy and the assembly moves vertically

downward along ideally frictionless guide rails. The guide rails control the trajectory

of the crosshead and tup such that the tup impacts specimens at the same precise

location over each test (compare this to a gas-gun or other such test where the impact

site from a projectile can be highly variable). The tup impacts the specimen. A set of

pneumatic rebound brakes prevent a secondary impact due to rebound. If a rebound

does not occur due to specimen failure, the brakes simply stop the crosshead and tup

from impacting the floor. The test is completed at this point.

In the FGM plate impact tests, a constant mass of 13.06 kg was applied to the

crosshead for each test and a 2.54-cm diameter tup was used. The tup was composed

of hardened steel and cylindrical in shape with a hemi-spherical tip (the exact alloy

of steel is unknown and proprietary to Instron). The energy delivered at impact

was controlled by the height of the crosshead. No spring assistance was used for

any impact test in this research. The speed of the tup at impact was measured by a
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Figure 5.1: Dynatup apparatus used for low- to medium-
energy impact testing.

velocity photo-detector wired into the Dynatup data acquisition system. The Dynatup

is additionally instrumented with a piezoelectric load-cell capable of capturing a force

history over the contact duration between the tup and specimen during an impact

test. This feature was not used during these tests due to a calibration error that

prevented accurate force data collection. A picture of the Dynatup configuration is

shown in Figure 5.3. More details associated with the actual tests will be presented

later in this chapter.

5.1.1.2 Plate Specimen Fixture. The second requirement of the impact

experiment was to configure plate specimens such that analytical and computational

comparisons of the impact event can readily be made. A plate with a circular geome-

try is one that is very well-suited to studying impact events for a two specific reasons.

First, stress waves generated from impact against a medium of general composition
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Figure 5.2: Schematic showing the major components of the
Dynatup apparatus.
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Figure 5.3: Dynatup apparatus with plate fixture installed.

and geometry will propagate radially prior to interaction effects from material and

geometric boundaries. Secondly, flexural waves due to an impact that can be treated

axisymmetrically will propagate only radially for a circular plate with a circular geom-

etry and boundary. A response such as this greatly simplifies analysis, as was shown

in Chapter III. Thus, configuring the Ti-TiB composite and FGM plate specimens as

closely as possible to a circular plate is highly advantageous to subsequent analyses

(although not always easily achieved).

Recall that the Ti-TiB composite and graded plate specimens constructed by

BAE Systems were square in geometry (7.62 cm x 7.62 cm – 1.27 cm thick). BAE

Systems constructs the FGM plates only in square and rectangular geometries with-

out additional machining processes. Ti-TiB mixtures, even ones with low volume

fraction of TiB, cannot be machined with conventional techniques. This fact makes
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Figure 5.4: Assembled and exploded view of the plate speci-
men fixture used in the Dynatup apparatus.

additional processing of the specimens highly expensive, and the budget for this re-

search would not allow for the plates to be machined into circular disks. It therefore

became necessary to design a fixture that could configure the plates to have as close

to a circular boundary condition as possible while simultaneously maintaining the

as-processed square geometry of the plates. In addition to these requirements, the

plate fixture must also fit into the space constraints of the Dynatup.

The plate fixture, as designed, is shown in Figure 5.4. The fixture was specifically

designed to configure the square plate as closely to a circular plate configuration as

possible while additionally fitting within the spatial constraints of the Dynatup. The

fixture consists of three metal plate components: (1) a top plate with a circular
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opening; (2) a spacer plate with an opening the same dimensions of the specimen; and

(3) a bottom plate with a circular opening. The specimen plate fits into the opening

provided for it in the spacer plate. The top and bottom plates sandwich the spacer

plate and specimen and are secured by eight fasteners as shown. The fasteners are

threaded into the bottom plate and tightened to secure the assembly together. The

fixture and specimen plate assembly are then placed into the Dynatup. Four holes

in the bottom plate of the fixture allow attachment to the Dyantup apparatus. The

mechanical drawings for the bottom, spacer, and top plates of the specimen fixture

are shown in Figures 5.5-5.7, and a photograph of the plate fixture installed in the

Dynatup apparatus is shown in Figure 5.8.

The fixture components were all machined from 304 stainless steel. This grade

of stainless steel is readily available and inexpensive and has favorable properties,

including corrosion resistance, machinability, and strength. These properties make it

an ideal material for use in impact tests where the fixture would require durability

for use in multiple tests. The components were all machined from 1.27 cm plate stock

according to the specifications in Figures 5.5-5.7. Note that these drawings have only

nominal dimensions shown and do not include tolerances. Every attempt was made

to hold the components as close to their nominal dimensions as possible during the

machining process.

The bottom plate attaches to the base of the Dynatup via four hex-head 3/8-16

UNC (Unified Standard, American and English Standard) screws. The Dynatup base

is 5.08 cm–thick steel with four tapped holes to receive these fasteners at the locations

shown in Figure 5.5. The bottom plate additionally has eight holes tapped to receive

1/4-28 UNF fasteners to secure the three component plates together. The bottom

plate had to be tapped because the bottom plate rests flat on the Dynatup base and

protruding screws/fasteners would not fit-up properly. The spacer plate rests on top

of the bottom plate. The spacer plate serves two purposes. First, its opening is only

very slightly larger than the plate specimens, and thus it serves to properly position

and center the specimen in the fixture and the Dynatup. Secondly, the spacer plate
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is the same thickness as the specimen and prevents crushing of the plate specimen as

the fasteners are tightened to secure the fixture and specimen in the Dynatup. The

top plate then rests on top of the spacer plate. The top plate has eight through-holes

for the hex-head 1/4-28 UNF fasteners. The eight 1/4-28 UNF fasteners were 3.81

cm long and partially threaded since they were only threaded into the bottom plate.

Each fastener was composed of 18-8 grade stainless steel (note that 18-8 stainless steel

is a broad category of stainless steel alloys containing 18% chromium and 8% nickel;

304-stainless steel alloy is a member of this category [86]). The four 3/8-16 UNC

Dynatup attachment screws were 2.54 cm in length were also composed of this same

common alloy. Washers were placed between all the fastener hex-heads and their

contact sites on the fixture components to distribute the contact loads over larger

areas.

The eight 1/4-28 UNF plate fastener screws were tightened to 20 Newton-meters

(N-m) for each test. This value was determined based on a trial-and-error process in

the laboratory with the fixture in the Dynatup. The key to finding an appropriate

value was a compromise between securing the plate specimen adequately while si-

multaneously preventing crushing loads on the specimen plates. Based on experience

in the laboratory, torque loadings in excess of 20 N-m increased the risk of crushing

the plate specimens. Below 20 N-m, the specimen plates were found to not be well

secured. The four 3/8-16 UNC Dynatup attachment screws were tightened to a bolt

load of 35 N-m. This load was found to secure the plate fixture adequately without

requiring re-tightening of the attachment bolts in between impact tests (although the

bolt torque was verified for each test).

The top and bottom fixture plates each have a circular cutout 6.35 cm in diam-

eter with a uniform 0.318 cm chamfer at an angle of 45◦ with the plate normal around

the circumference on the face incident with the specimen plate. (The net opening,

including the chamfer in each cutout was then 6.985 cm in diameter; see Figures 5.5

and 5.7). The circular cutouts configure the plate specimen as a circular plate with

built-in edges. Upon impact from the tup at the center of the plate specimen top
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Figure 5.5: Bottom plate in the Dynatup plate specimen fix-
ture assembly. The plate was machined from 304 stainless steel
plate stock 1.27-cm thick. All dimensions are in cm unless oth-
erwise specified.
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Figure 5.6: Spacer plate in the Dynatup plate specimen fix-
ture assembly. The plate was machined from 304 stainless steel
plate stock 1.27-cm thick. All dimensions are in cm unless oth-
erwise specified.
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Figure 5.7: Top plate in the Dynatup plate specimen fixture
assembly. The plate was machined from 304 stainless steel plate
stock 1.27-cm thick. All dimensions are in cm unless otherwise
specified.
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Figure 5.8: Plate fixture with FGM specimen plate installed
in Dynatup.

surface, the transverse deformation of the plate will be very close to that of an ideal

circular plate. The chamfers around the circumference of each cutout mitigate stress

concentrations that would be present from an abrupt corner resisting deformation

and bearing into the plate specimen. This has the added effect of allowing rota-

tions of the plate at those locations where an abrupt corner could perhaps be much

stiffer. In Chapter VII it will be shown that the plate follows closely the behavior of

a simply-supported circular plate for transverse deflections.

5.1.1.3 Plate Specimens. Ten plate specimens of various composition

were obtained for the FGM plate impact experiments:

1. Two plates were monolithic, composed of 100% Ti - 0% TiB

2. Two plates were monolithic, composed of 85% Ti - 15% TiB

3. Two plates were monolithic, composed of 15% Ti - 85% TiB

4. Four plates were FGM, composed of Ti-TiB graded over seven layers
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Each plate was 7.62 cm x 7.62 cm - 1.27 cm thick. The monolithic specimens were to

be used to give baseline material data for specific volume fraction combinations of Ti

and TiB that coincide with three of the seven compositional layers of the FGMs. The

FGMs, with seven layers of different volume fraction ratios of Ti to TiB, are illustrated

in Figure 5.9 with compositional data in Table 5.1 (reproduced from Chapter IV for

convenience). The expense of the Ti-TiB composites was the primary reason only ten

specimens were obtained for testing.

A technical drawing of the plate specimens is given in Figure 5.10. The drawing

shows the location of the four strain gages mounted to the bottom surface of each

plate. The FGM plates were installed in the fixture such that the TiB-rich surface

was the top surface and contact surface for the tup impact. This was done to remain

consistent with the aerospace vehicle TPS application where the FGM’s ceramic-rich

surface would likely be the exterior surface (resisting thermal loads) subject to impact

from a foreign projectile. The FGM’s Ti-rich surface was the bottom surface where the

strain gages were mounted. On monolithic samples, the choice of surface was arbitrary

(since the material has the same monolithic composition through the thickness of the

plate) but the strain gages were always placed on the surface opposite the tup impact

surface. The plates are always centered underneath the tup impact site because of

the design of the specimen fixture. The gages are shown numbered on an actual FGM

specimen in order from the closest to the center of the plate to the most distant in

Figure 5.11. Strain gages 1-3 were used to collect data, but gage 4 was left unconnected

during the impact tests. The reason for this was a late improvement in the data

collection triggering mechanism that required that a channel in the data acquisition

oscilloscope be freed for this purpose. The details of the triggering mechanism will

be discussed later in this chapter.

Note the gages were oriented along two axes on the surface of the plate. In

the circular plate configuration, these gages are oriented along two perpendicular

radial axes at different radial locations from the center of the plate. This allows

the radial strain components to be measured during the entire impact event at three
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Figure 5.9: Illustration of layers in FGM plate specimens.

Table 5.1: BAE Systems Ti-TiB FGM through-the-
thickness configuration of the plate specimens shown
in Figure 5.9.

Layer % Ti % TiB Thickness, cm

1 15 85 0.181
2 25 75 0.181
3 40 60 0.181
4 55 45 0.181
5 70 30 0.181
6 85 15 0.181
7 100 0 0.181

locations. Every attempt was made to orient the principal gage directions along these

radial perpendicular axes, although admittedly very small deviations occurred during

installation that could not be prevented because of the very close proximity of the

gages to each other.

5.1.2 Instrumentation. The previous section detailed the hardware used

in the plate impact tests and directly addressed requirements 1 and 2 of the test

objective. Requirement 3 was to provide sufficient instrumentation to characterize the

impact event along with the material response. In this section the instrumentation

used to collect the strain histories during the impact events in the Dynatup apparatus

will be briefly explained. The key components of the instrumentation system are the

strain gages, the signal conditioning system, and the data acquisition system. Only
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Figure 5.10: Plate specimen. Titanium, Ti-TiB monolithic,
and Ti-TiB FGM specimens were machined using this specifica-
tion. Placement of strain gages also shown. All dimensions are
in cm unless otherwise specified.
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Figure 5.11: FGM plate specimen with strain gages installed.

information specific to the components used in the tests will be provided; a broad

discussion of the components and how strain measurements are obtained is provided

in Appendix A.

5.1.2.1 Strain Gages. Two types of foil strain gages were used for data

collection (Vishay Micro-Measurements 125AC series gages; the gages are essentially

the same and the only difference between the two types are the material used for wire

in the gage). A photograph of the strain gage used is shown in Figure 5.12. Gage 1 (see

Figures 5.10 and 5.11) is a linear foil gage composed of constantan wire (60% copper,

40% nickel) with a flexible polyimide backing and strain range of approximately ±3%

(Vishay Micro-Measurements EA-13-125AC-350, see [127]). Gages 2-4 are linear foil

gages composed of annealed constantan wire with flexible polyimide backing and a

strain range of ± 10% (Vishay Micro-Measurements EP-08-125AC-350, see [127]).

Each gage has an unstrained resistance of 350 Ohms. The polyimide matrix width
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and length are 5.6 mm and 10.2 mm, respectively, and the foil wire pattern has a

length and width of 3.18 mm. The close proximity of the gages to each other on the

plate required trimming of the polyimide matrix backing to near the wire patterns

and solder tabs on each gage.

(Before continuing, a note on the choice of the different gages is in order. In the

original design of this experiment, strain gage 1 was intended to be used as a sacrificial

gage that would trigger the data collection system. It was felt that this gage being

the closest to the impact site would not survive the duration of the test but would

survive long enough to trace the initial strain in the plate to trigger data collection

for the rest of the gages. For this reason, a less expensive strain gage was used for

gage 1. The remaining gages 2-4 were large deformation gages intended to trace the

strain histories in the plates at their respective locations. It was found during mock

tests in the laboratory that the voltage signal from gage 1 was insufficient to trigger

the data collection system in a reliable fashion. A different triggering mechanism was

devised and is discussed in detail later in this section. The mock tests also proved

that gage 1 would in fact survive impact testing and yielded very useful data. The

new triggering mechanism did not allow all four gages to be used for data collection

and therefore gage 4 was eliminated from the tests; only strain gages 1-3 were used.)

The gage strain sensitivity, which is also referred to as the gage factor (GF ), is

a dimensionless relationship expressed as

GF =
∆R

R

L

∆L
(5.1)

R is the resistance in the gage, ∆R is the change in resistance, L is the initial length

of the foil wire gage section, and ∆L is the change in length of the foil wire gage

section. The gage factor for strain gage 1 was 2.135 and the gage factor for gages

2-4 was 2.100. The gage factor is usually pre-determined by the manufacturer and

is reported with other gage specifications. These values and other specifications for
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Figure 5.12: Vishay 125AC series strain gage used in impact
tests for collecting strain histories [127].

the gages will be important when calculating the measured strain on each specimen

over its impact response.

The strain gage configuration is shown in Figure 5.13. The strain gages were

wired to the signal conditioner system using 3-conductor twisted, stranded copper

wire with vinyl insulation (Vishay Micro-Measurements 326-DTV, see [131]). The

bulk wires were soldered to terminals separate from the actual gages (Vishay Micro-

Measurements CPF-75C, see [129]). Two single strands from the bulk wires were then

soldered as jumper wires to the actual gages. This configuration was recommended by

Vishay Micro-measurements to keep the mass of the wire and solder on the actual gage

to a minimum to enhance survivability of the gages. The terminals and gages were

bonded to the plate specimens using a special adhesive capable of nearly ideal adhesion

to a test coupon undergoing large tensile deformations (Vishay Micro-Measurements

M-Bond AE-15, see [128]).

5.1.2.2 Signal Conditioner. The strain gages, once installed on the

plate specimens, were wired into a signal conditioning unit. The purpose of the sig-

nal conditioning unit is to convert the resistance change (due to plate straining) in
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Figure 5.13: Illustration of strain gage configuration with sep-
arate bonded terminal for attachment of the wire leads to signal
conditioner and two single-stranded jumper wires from the ter-
minal soldered to the strain gages [130].

the strain gages into a meaningful quantity that can easily be measured. A separate

signal conditioner was used for each strain gage. The signal conditioners used were

manufactured by Ectron Corporation, Model 562, and owned by the University of

Dayton Research Institute, Dayton, OH. The conditioners are composed of a Wheat-

stone bridge circuit and a DC differential operational amplifier (see Appendix A).

The active arm of each Wheatstone bridge circuit was designed for 350 Ohm strain

gages, the excitation voltage of each bridge circuit was 5.0 Volts, and the amplifica-

tion gain was G = 20. The bridge circuit was balanced prior to each test to ensure

accurate voltage readings. The signal conditioners used in the tests additionally had

a shunt calibration feature that was used to correlate the output voltage from the

signal conditioning unit to the strain in the plate specimens. This shunt resistance

is a known quantity (49,000 Ohms for these units), and the system can be calibrated

to correlate the output voltage to a known change in resistance. This is how the

89



mechanical strain from the strain gage is related to output voltage. The Ectron 562

conditioners have a (+) and (-) shunt calibration feature for calibration in tensile or

compression gage loading.

5.1.2.3 Data Acquisition. The last component of the instrumentation

is the data acquisition unit. The voltage signals output from the signal conditioner

are useless if they cannot be deciphered. Thus, an instrument capable of detecting,

deciphering, and conveying the signals to the test engineer becomes necessary to the

overall experimental process. In theory, any device capable of measuring a voltage

could be used including a voltmeter. In this case, the goal is to record strain histories

over a finite length of time while the plate specimens respond to impact loading. It is

important to capture the voltage changes over the entire length of the impact event

in order to characterize the material response adequately. A voltmeter generally mea-

sures instantaneous voltages and cannot store a history of voltages over time. This

makes such a device impractical for use in these tests. Further, the entire impact

event can occur over a length of time on the order of a millisecond (1.0 x 10−3 sec).

An oscilloscope, on the other hand, is capable of measuring voltages over time. Os-

cilloscopes vary widely in their capabilities, and therefore an oscilloscope with the

capability to store a voltage-strain history over a brief period of time with sufficient

resolution to capture strain effects on the order of microseconds (1.0 x 10−6 sec) is

necessary.

The oscilloscope used in these tests was a Tektronix, Inc. TDS 3034 digital

oscilloscope, owned by the University of Dayton Research Institute, Dayton, OH.

The oscilloscope can measure separate voltages on up to four channels (i.e., four

strain gages maximum) and can sample at a rate of 2.5 x 109 samples per second.

Each channel stores a fixed number of data points (10,000 for this unit) over a finite

period of time. Essentially, one sets the time window of interest and the oscilloscope

collects 10,000 data points over that window. Thus, if one desires data over 2000

microsecond window, the oscilloscope measures voltages every 0.5 microseconds. The
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10,000 data points are stored in memory and can be recovered as data files that can

be read by a computer for data processing later. The key to collecting this important

data is to automate the oscilloscope to begin collecting data as the impact event

begins. This cannot be accomplished manually by a human since one could not react

fast enough to consistently arm the oscilloscope for data collection over such a short

period of time.

The digital oscilloscope used has a feature that allows one to automate data

collection to begin (or “trigger”) once a voltage reading surpasses a given threshold.

Further, since the unit collects 10,000 data points in continuous cycles, the oscilloscope

can be programmed to store a finite amount of data before the voltage reaches a

threshold value (or “pre-trigger”). This feature becomes important since voltage

readings prior to reaching the triggering threshold are not lost; in fact, the entire

strain history from the impact event can be captured. Thus, a history can have a

zero voltage reading for a set percentage of the entire collection window, while the

remaining window stores non-zero data.

The experiments were initially designed to use strain gage 1 as the gage to

trigger the remaining gages to collect data. Initial mock tests with titanium plates

demonstrated that a 2000 microsecond time window was adequate to capture the

entire impact event from the plates with a 20% pre-trigger and 40 millivolt thresh-

old. (In other words, 10,000 data points were continuously collected over a 2000

microsecond window but not stored to memory; once the voltage output from the

signal conditioner reached 40 millivolts, the oscilloscope is triggered to store 20% of

the 10,000 voltage readings before the threshold was reached into its memory while

the remaining 80% of the 10,000 data points after the threshold was reached were

also stored in memory. When the voltage threshold is reached on a gage (or sensor)

designated as the trigger sensor, the other gages are ordered to immediately store

to memory 20% of their data points before the trigger was initiated and 80% of the

data points after the trigger was initiated.) While these settings worked well for col-

lecting the strain histories, background noise in the facility and Dynatup apparatus
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was found to prematurely trigger the data acquisition unit on some occasions and the

histories of the impact events were lost. It was therefore deemed necessary to use a

voltage signal much stronger than can be produced by a strain gage to trigger the

oscilloscope.

A fiber optic sensor was chosen to successfully accomplish this task. A single

sensor (Banner, Inc., Model FI22FP) was placed directly above each specimen plate

to trigger the oscilloscope to begin data collection (see Figure 5.8). The sensor is

essentially composed of a transmitter, receiver, and amplifier. The sensor was ener-

gized by a 10 Volt DC power supply (Hewlett-Packard Model 6023A) that caused the

transmitter to emit a beam of red light. Provided the beam is detected by the receiver

portion of the sensor, a signal is sent to the sensors amplifier and the output from that

amplifier can be read by the oscilloscope. If the beam is not detected by the sensor,

the output from the amplifier is essentially zero. Strain gages 1-3 in Figure 5.11 were

kept for data collection and strain gage 4 was omitted. The fiber-optic sensor was

then routed to the oscilloscope channel occupied by strain gage 4. The oscilloscope

was programmed to begin data acquisition following this sequence: (1) the voltage

reading from the fiber-optic sensor dropped below 5.0 Volts (one-half of the uninter-

rupted 10 Volt output from the fiber optic sensor—when the output drops sharply

from the uninterrupted 10 Volt level, the sensor is indicating the beam is somehow

interrupted), (2) followed by a short delay in the system to allow adequate time for

the tup on the Dynatup crosshead to approach the plate specimen, (3) followed by

the voltage reading from strain gage 1 surpassed a 40 millivolt threshold. With mock

tests in the laboratory, this was found to eliminate premature triggering of the data

acquisition system while resulting in extremely reliable collection of the impact events.

The 2000 microsecond history window and and 20% pre-trigger were maintained for

the impact tests. The strain histories thus were collected such that 400 microseconds

of data were stored prior to the 40 millivolt threshold being reached on strain gage

1, and 1600 microseconds of data were stored after the 40 millivolt threshold was
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reached (this can be seen graphically in the raw data plots of the voltage histories in

Appendix B.

5.1.3 Strain History Measurement. The goal of the impact tests was to

obtain strain histories from the plate specimens that are generated over various impact

events. These histories provide insight into the overall response of the plate specimens.

The major hardware and instrument components of the impact experiment have been

detailed. Before the test results are presented, a brief summary is provided here

outlining the sequence of events that occur to obtain the strain histories from the

plate specimens.

1. The plate specimen is placed in the plate fixture and the assembly is installed in

the Dynatup apparatus. The four large machine screws that attach the fixture

to the Dynatup base plate were torqued with a torque wrench to 35 N-m. The

eight plate fixture screws were each torqued to 20 N-m.

2. The Dynatup is configured to deliver a prescribed impact to the plate. In the

case of our tests, the crosshead mass was held constant at 13.06 kg and the height

of the crosshead-load cell assembly above the plate impact site was varied. Only

gravity mode impacts were carried out; pneumatic-assisted spring compression

against the crosshead was not used in these tests.

3. The strain gages were wired to the signal conditioner and the fiber-optic sensor

was aligned such that the infrared beam crossed directly in the path of the

tup just above the impact site. The strain gages were balanced with shunt

calibration before each test.

4. The Dynatup, with prescribed potential energy stored in the system, was re-

leased from rest and the potential energy was converted to kinetic energy as the

crosshead-load cell assembly moves along the guide rails.

5. At the point where the tip of the tup moved directly into the path of the laser

signal from the fiber-optic sensor, the beam signal is immediately broken and the
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data acquisition in the oscilloscope is triggered to begin collecting data from the

strain gages after a pre-determined time delay and minimum voltage threshold

detected by the oscilloscope from the strain gages.

6. The tup impacts the plate specimen, immediately generating a stress wave that

propagates through the plate specimen. Depending on the length of time that

the tup remains in contact with the plate, significant global deformation of the

plate may occur.

7. The initial and subsequent stress waves will eventually reach the bottom surface

of the plate specimen. The waves and associated global deformation of the

plate will strain the plate and these strains are measured by the strain gages

mounted on the bottom surface of each plate. The data acquisition system in the

oscilloscope records the strain history for each gage over the set time window.

A schematic showing the system components is shown in Figure 5.14.

5.2 Plate Impact Test Results

5.2.1 Pre-Test Inspection of the Ti-TiB Plates. Prior to impact testing, the

graded and monolithic Ti-TiB plate specimens were evaluated using non-destructive

ultrasonic scan tests to assess the level of damage that might exist in the specimens

before more damage is potentially introduced in the Dynatup experiments. Such

an assessment is important in the event the response of the structure is not what is

expected from analysis. The literature related to the theory, equipment, and practices

associated with ultrasonic non-destructive evaluation (NDE) of structures is extensive;

for more details, including lists of relevant standards, the reader is referred to [77], [19],

[54]. These references will be used to summarize the ultrasonic scan tests performed for

this work, specifically ultrasonic immersed through-transmission scanning discussed in

the next paragraphs.
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Table 5.2: Strain gage and signal conditioner spec-
ifications common to all plate impact experiments.
These values are necessary in order to convert voltage
readings in the oscilloscope from the gages to physical
strain.

Parameter Value Units

Gage Factor, GF , Strain Gage 1 2.135
Gage Factor, GF , Strain Gages 2, 3 2.100
Strain Gage Resistances, R1 350 Ohms
Shunt Resistance, Rs 49,000 Ohms
Excitation Voltage, ei 5.0 Volts
Gain, G 20

Figure 5.14: Schematic showing the sytem components for
collecting strain histories from Dynatup impact events.
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In ultrasonic immersed through-transmission scanning, the specimens are im-

mersed in a tank of distilled water standing on their sides. The through-transmission

scanning is accomplished by placing a piezoelectric emitter transducer on one side

of the specimen and a piezoelectric receiver on the opposite side of the specimen,

both immersed in the water tank with the specimens. The water serves as a coupling

agent for sound waves to pass from the emitter to the specimen and receiver. With-

out the coupling agent, the disparity in acoustic impedance (material wave velocity

multiplied by the density) between a solid and air can cause sound wave transmission

problems for either the emitter or receiver if a gap exists between the specimen and

one of the transducers. In through-transmission mode, a sound pulse is emitted from

the emitter-transducer and the pulse propagates as a wave through the couplant (the

water) until it reaches the material specimen. Some of the energy in the initial wave

is transmitted into the specimen while some of the energy is reflected back toward the

emitter. The transmitted energy propagates through the specimen as a mechanical

wave. When the transmitted wave reaches the second material boundary, a portion

of the wave energy transmits into the couplant while the remainder of the energy re-

flects back into the specimen. The wave that has passed through the specimen is then

detected by the receiving transducer. A data acquisition system and digital readout

then displays the results of the scan, typically as a percentage of the wave amplitude

that reaches the receiver with respect to either (1) the amplitude of the initial emitted

pulse or (2) the peak amplitude detected by the receiver.

So far, the immersed through-transmission ultrasonic NDE technique has been

discussed under only ideal conditions. The ultimate purpose behind NDE is to deter-

mine if defects exist within the continuum of the specimen. Defects such as porosity,

cracks, voids, inclusions, etc., all represent a material and/or geometric boundary

within a specimen. When a wave traveling through a continuum encounters such a

boundary, the wave is disrupted and scattered. Generally under these conditions, the

receiver will detect a transmitted wave that is significantly lower in amplitude than

the either the amplitude of the initial emitted pulse or the peak amplitude detected
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by the receiver. When zones of this nature are found, it is assumed that some type

of defect is present.

The inspection technique is termed “ultrasonic” because the sound waves are

emitted at frequencies higher than what is perceivable by humans. The sound pulses in

these tests usually vary between 0.1-15 Megahertz (1.0 x 106 cycles per second); young

healthy humans can generally perceive sound frequencies up to 0.020 Megahertz [10].

The amplitude of sound waves is usually characterized by the measured pressure of a

sound wave with respect to a reference pressure (which depends on a great number of

factors but primarily material properties; reference pressure in air is usually taken to

be 20 micropascals and in water is usually 1 micropascal [10]), measured in decibels:

Pressure Level = 20 log10

(
Sound Pressure

Reference Pressure

)
decibels (5.2)

With respect to sounds through air that humans are accustomed to, the sound waves

in a radio broadcast can reach frequencies up to 5000 Hertz (0.005 Megahertz) and

deafening sounds such as thunder or artillery reach amplitudes of 100-120 decibels [10].

It is important to note that the amplitude and frequency of the sound pulses

play an important role in the ultrasonic NDE process. The piezoelectric emitter gen-

erates not merely a single pulse, but rather many pulses over a short period of time.

As these pulses transmit into the specimen, the material undergoes low-amplitude

cyclic loading. The cyclic loading generates internal friction that can attenuate some

of the wave energy traveling through the specimen. Rigid materials are especially

susceptible to this phenomenon, therefore lower frequency pulses are typically used

with these specimens to ensure greater penetration of the waves. Sufficient ampli-

tude, on the other hand, is important so that peaks from the emitted waves can be

distinguished from system noise. Calibration specimens for specific materials and de-

fects are constructed to aid NDE technicians in quickly determining optimal system

settings and interpreting output from various tests.
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The ultrasonic scans for this research were all performed at the Non-Destructive

Evaluation Laboratory operated by the Air Force Research Laboratory, Materials &

Manufacturing Directorate. Mr. Jeff Bennett, a certified NDE Specialist & Tech-

nician, performed the NDE for this work using the immersed through-transmission

ultrasonic scan technique. The scan system is manufactured by WesDyne Corpora-

tion and is an AmData Model 100564, 4-Axis Ultrasonic System. The software used

for readout is called IntraSpect and is developed by the same manufacturer. The

emitter was set to generate sound wave pulses at a peak intensity of 51 decibels (dB)

at a frequency of 2.25 Megahertz (MHz). The data was collected in “C-scan” mode

(the designation given to scans that give a plan-view or “map-view” of the specimen

characteristics), where the automated system used a raster scan pattern to move the

transducers over the 7.62-cm x 7.62-cm plane of the plates such that the transmit-

ted wave propagated through the 1.27-cm thickness direction of the plate. (Other

ultrasonic inspection scan modes include “A-scan” mode, which provides depth in-

formation at a single point only, and “B-scan” mode, which provides cross-section

information along a linear path. Neither of these scan techniques were used in this

work.)

The results of the scans are shown in Figure 5.15. No scans were taken of the

100% Ti plates. The plates in Figure 5.15 are numbered based on the impact test

in which they were used (see Table 5.3 in the next section). The two pure titanium

plates that were not scanned were designated as specimens 1 and 2. Upon examining

the results of the ultrasonic scans, some conclusions can be made with respect to

the integrity of the composites. The two Ti-rich monolithic samples (85% Ti-15%

TiB) allow 90%+ of the peak intensity of the sound wave to transmit through the

plate, indicating that the plates likely have minimal internal defects that may be of

consequence to the impact tests. The two TiB-rich monolithic samples (15% Ti-85%

TiB), on the other hand, allow only 70%+ of the peak intensity to transmit through

the specimens. The scans indicate for these specimens that the received intensity

value is rather uniform throughout the plane of the specimens. The conclusion that

98



Figure 5.15: Through-transmission immersed ultrasonic C-
scans of Ti-TiB monolithic and functionally graded plate speci-
mens prior to impact testing. The color contours represent the
percentage of the peak signal from the piezoelectric emitter (51
dB at 2.25 MHz frequency) detected by the piezoelectric receiver
underneath the specimen according to the scale shown.
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can be made is not necessarily that the TiB-rich specimens are greatly flawed but

rather that the TiB-rich material attenuates the signal more dramatically than the

Ti-rich material. It is easy to see that this may be the case when the fact that the

elastic modulus for TiB is significantly larger than that for Ti by more than a factor

of three even though the densities are comparable (recall the published elastic moduli

from BAE Systems in [4] for Ti and TiB were 110 GPa and 370 GPa, respectively,

in Table 4.5). Further, the amplitude and frequency of the sonic pulse were the same

as for that of the Ti-rich monolithic samples, which can account for the difference in

peak transmission. With regard to the functionally graded plates, specimen numbers

7 and 10 appear to allow an average of approximately 80% of the peak intensity to

transmit. Specimen numbers 8 and 9, on the other hand, transmit closer to 90%

of the peak intensity. Inspection seems to indicate that the contours lie between

the two extreme volume fraction ratios of the monolithic samples. This is not an

unexpected result when the compositions of the seven layers of the FGM are accounted

for; the attenuation of the peak intensity should lie between the two extreme cases.

It is noteworthy that the contours between the four FGM specimens appear to vary,

implying that there may be significant variability in the reaction sintering process used

to manufacture the FGMs. It is also important to note that FGM specimen 9 has a

region near the outer edge of the plate where only 50% of the sound energy transmits

through the plate. This is undoubtedly an area where there is potentially damage or

another defect within the plate. The depth of the defect cannot be determined from

an ultrasonic scan in C-scan mode, and no further scans were conducted to ascertain

the depth or nature of the defect.

The main conclusion from the ultrasonic scans is that the plates, for the most

part, appear to be free of macroscopic defects. FGM plate specimen 9 has a small

defect near the edge of the plate but is otherwise free of any major defects. Micro-

scopic defects (i.e., microcracks or microvoids) can be more difficult to trace with

this inspection technique, but defects such as these cannot be easily detected without

invasive measures. Since the plates needed to be intact for the impact tests, and since

100



Table 5.3: Summary of plate impact tests using Dy-
natup apparatus.

Test Crosshead/Tup Velocity, Impact
No. Description Mass (kg) Height (m) Actual (m/s) Energy (J)

1 100% Ti, 0% TiB Mono 13.06 0.508 3.040 60.35
2 100% Ti, 0% TiB Mono 13.06 0.635 3.476 78.90
3 85% Ti, 15% TiB Mono 13.06 0.508 3.050 60.75
4 85% Ti, 15% TiB Mono 13.06 0.635 3.479 79.04
5 15% Ti, 85% TiB Mono 13.06 0.381 2.585 43.63
6 15% Ti, 85% TiB Mono 13.06 0.508 3.050 60.75
7 7-Layer Ti-TiB FGM 13.06 0.508 3.040 60.35
8 7-Layer Ti-TiB FGM 13.06 0.635 3.412 76.02
9 7-Layer Ti-TiB FGM 13.06 0.762 3.765 92.56
10 7-Layer Ti-TiB FGM 13.06 0.889 4.078 108.6

the goal of this work is not to perform a material study on Ti-TiB, it was deemed

appropriate to forgo such inspection of the plates.

5.2.2 Dynatup Plate Impacts. After pre-impact inspection of the Ti-TiB

plate specimens yielded positive results, the plate specimens were then instrumented

with strain gages and tested under impact conditions in the Dynatup apparatus. A

summary of the Dynatup impact tests is shown in Table 5.3. The crosshead mass

and height were chosen based on a laboratory trial-and-error process with extra 100%

Ti plate samples. The mass, height, and impact energy were chosen sufficiently large

to obtain measurable strain histories without permanently damaging the Dynatup

system and plate fixture. The velocity was measured during the tests directly above

the impact site using a velocity photo-detector that was part of the Dynatup apparatus

[45]. The impact energy is assumed to be kinetic energy (KE) only, and is calculated

by

KE =
1

2
mv2 (5.3)

where m is the mass of the crosshead and v is the velocity of the crosshead.

The actual impact velocity and impact energy in each test is compared to the

ideal impact velocity and energy in Table 5.4. The ideal impact velocity assumes
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that upon release of the crosshead from rest, all potential energy (PE) stored in

the crosshead is converted to kinetic energy on impact with no work performed on

the system or losses from external sources. The actual impact velocity is less than

the ideal impact velocity because losses can occur in the system (such as friction in

the guide rails) that slow the crosshead. Both the ideal and actual velocities of the

crosshead and tup are computed from the energy relation:

KE1 + PE1 + W1→2 = KE2 + PE2 (5.4)

1

2
mv2

1 + mgH1 + W1→2 =
1

2
mv2

2 + mgH2 (5.5)

KE and PE are the kinetic and potential energy of the crosshead assembly in states 1

and 2 in equation (5.4). W1→2 is the external work performed from state 1 to state 2.

H is the height measured from the tip of the tup to the top surface of the specimen

plate and g is the gravitational constant. State 1 is when the crosshead is at rest and

raised above the plate at some height H1. State 2 is when the tup is at its maximum

velocity and the height of the tup above the plate is zero. In state 1, all energy stored

in the crosshead is in the form of potential energy; in state 2, all the energy stored

in the crosshead is in the form of kinetic energy. In the ideal scenario, W1→2 is zero;

in the actual tests, losses due to friction or other external sources are included in this

term and thus W1→2 is non-zero. Assuming W1→2 = 0 (ideal scenario), v1 = 0, and

H2 = 0, the ideal impact velocity is calculated by rearranging terms in (5.5):

v2 =
√

2gH1 (5.6)

It is clear from the data that there are indeed losses in the system and W1→2 is

non-zero. These losses could be attributed to any or multiple factors including fric-

tion/vibration in the guide rails and drag or uneven motion of the crosshead during a

drop. The worst losses occurred in test 5, in which case the percent difference between

the actual and ideal impact energies was 11.9%. The actual velocities and energies

will be used for analytical and computational comparisons in subsequent chapters.
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Table 5.4: Comparison of predicted and actual ve-
locities and impact energies from Dynatup impact
tests.

Test Crosshead/Tup Velocity Impact Energy
No. Mass (kg) Height (m) Ideal (m/s) Actual (m/s) Ideal (J) Actual (J)

1 13.06 0.508 3.157 3.040 65.08 60.35
2 13.06 0.635 3.530 3.476 81.37 78.90
3 13.06 0.508 3.157 3.050 65.08 60.75
4 13.06 0.635 3.530 3.479 81.37 79.04
5 13.06 0.381 2.734 2.585 48.81 43.63
6 13.06 0.508 3.157 3.050 65.08 60.75
7 13.06 0.508 3.157 3.040 65.08 60.35
8 13.06 0.635 3.530 3.412 81.37 76.02
9 13.06 0.762 3.867 3.765 97.65 92.56
10 13.06 0.889 4.176 4.078 113.9 108.6

Strain histories were successfully collected from eight of the ten tests. The

tests involving the 15% Ti-85% TiB monolithic samples (tests 5 and 6) were the two

unsuccessful tests. These specimens fractured severely immediately after impact and

virtually no data was collected on these specimens as a result. The FGM specimen

from test 10 also fractured, however, a significant portion of the strain history was

collected prior to failure and this history has been included. Appendix B gives the

raw strain histories for all tests and strain gages, successful and unsuccessful, in terms

of their voltage signatures measured on the oscilloscope. These voltage readings were

converted to strain by the process defined in Chapter V. Only the eight successful

tests will be presented from this point forward.

The raw strain histories required some processing to clean up their respective

data plots into something more meaningful. The data was processed using the com-

mercial software Matlabr in three phases. Refer to Figure 5.16. The first phase was

to truncate the strain gage signatures in the pre-trigger region. This region is the

part of the history stored in memory before the voltage reading from strain gage 1

had reached its triggering threshold to order data acquisition on the remaining gages

in the oscilloscope. The data where the strain readings were essentially zero were
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Figure 5.16: Illustration of areas requiring data processing
from raw strain history.

deleted and the data where strain became significant were maintained. Furthermore,

no impact event had significant strain data beyond 1500 microseconds after initial

impact from the tup and thus data after this time was preserved but was not plot-

ted. The second task was to remove significant outliers in the strain histories. The

outliers generally occurred where a strain gage experienced an electrical disturbance

(such as a short circuit or gage failure). Outliers were identified where it was clear

that the strain readings were significantly different from the remaining trends that

the reading could not be attributed to a physical behavior of the plate specimen. The

outliers were removed subjectively and not by using a set mathematical criteria. Only

very significant outliers were removed and the vast majority of the strain history was

maintained.
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The last task was to smooth the data in order to eliminate noise in the signal.

The particular smoothing technique used is called robust locally weighted regression, or

robust loess, a technique attributed to Cleveland [29], [30]. The data to be smoothed is

strain (the “response” variable) as a function of time (the “predictor” or “explanatory”

variable). The algorithm to perform this smoothing technique is included in Matlabr

as a built-in function. Essentially robust loess fits a polynomial to a local subset of

the data at each individual data point, with predictor variable values near the point

whose response is being estimated. The polynomial is locally fit using weighted least

squares, giving more weight to points near the data point whose response is being

estimated and less weight to points further away. The value of the regression function

for the point is then obtained by evaluating the local polynomial using the predictor

variable values for that data point. The loess data fit is complete after regression

function values have been computed for each of the data points (in this case, 10,000

data points minus any that were truncated or removed as outliers). The degree of

the polynomial and the number of data points used in the weighted least squares

are specified by the user. In this case, the smoothing was performed using quadratic

(second-order) polynomial regression and weighted least-squares over a range of 40

data points (that is, weights were applied to 20 data points on either side of the

data point whose response was being estimated). The choice of quadratic polynomial

regression and weighted least-squares over 40 data points was so that potentially

important oscillations in the plates were not lost while a significant portion of the noise

present in the signals was eliminated. Further, the computational cost of this method

is significant and the choice of higher-order polynomials over a greater number of data

points did not significantly enhance the plots of the strain histories. The smoothed

strain histories for the eight successful tests are shown in Figures 5.17-5.24. These

histories can be compared to the raw voltage plots in Appendix B. The mathematics

behind robust loess are quite extensive and will not be presented. Note that there is

very little scatter in the raw data plots and the smoothing function merely enhanced
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the general trend of the plot into something slightly more manageable. Arguably, the

plots could potentially have been useful without smoothing on their own.

A few key results will be discussed regarding the strain histories. First, the

general trend in most of the data is that strain gage 1 has the largest magnitudes

of strain over the impact event, strain gage 2 the second largest, and strain gage

3 the smallest magnitudes. This is exactly what we should expect. In the circular

plate configuration, the radial strain component measured by the strain gage would

in fact be largest at the center and smaller as one approaches the boundary of the

plate, given a circular plate with restrained boundary (whether clamped or simply-

supported). Strain gage 1 was closest to the radial center, strain gage 2 slightly farther

from the center, and strain gage 3 was closest to the boundary. The strains are tensile

through the entire impact event, and the radial strain histories all follow a similar

trajectory from zero strain prior to impact, maximum strain at the maximum load

from the tup, followed by unloading to “zero” strain (this will be explained shortly).

Table 5.5 shows the maximum strains recorded from each gage in each test and

the time that the maximum strain occurred. For plates of similar composition, the

maximum strains are larger and the time to maximum strain occurs more quickly as

the impact velocity increases. It is also clear that in some cases (very notably tests

1 & 2) that the magnitude separation between strain history curves from the same

test are not always consistent. This is associated with deviations in the strain gage

placement from the nominal positioning shown in Figure 5.10. In Chapter VI it will

be shown the effects on recorded strain histories caused by slight variations in the

gage location radially can be substantial.
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Figure 5.17: Strain histories for strain gages 1-3, 100% Ti
monolithic plate, plate test no. 1.

Figure 5.18: Strain histories for strain gages 1-3, 100% Ti
monolithic plate, plate test no. 2.
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Figure 5.19: Strain histories for strain gages 1-3, 85% Ti–15%
TiB monolithic plate, plate test no. 3.

Figure 5.20: Strain histories for strain gages 1-3, 85% Ti–15%
TiB monolithic plate, plate test no. 4.
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Figure 5.21: Strain histories for strain gages 1-3, Ti-TiB FGM
plate, plate test no. 7.

Figure 5.22: Strain histories for strain gages 1-3, Ti-TiB FGM
plate, plate test no. 8.
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Figure 5.23: Strain histories for strain gages 1-3, Ti-TiB FGM
plate, plate test no. 9.

Figure 5.24: Strain histories for strain gages 1-3, Ti-TiB FGM
plate, plate test no. 10.
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Table 5.5: Maximum strains and associated time
occurrence of maximum strains from impact tests.

Maximum Strains @ Time
Test Description Gage 1 Gage 2 Gage 3 µ-sec

1 100% Ti, 0% TiB Mono 0.0011837 0.0011728 0.0005157 579.4
2 100% Ti, 0% TiB Mono 0.0026020 0.0011612 0.0009269 528.4
3 85% Ti, 15% TiB Mono 0.0017115 0.0016030 0.0008058 629.5
4 85% Ti, 15% TiB Mono 0.0017644 0.0014692 0.0007834 542.0
5 15% Ti, 85% TiB Mono Failed Failed Failed
6 15% Ti, 85% TiB Mono Failed Failed Failed
7 7-Layer Ti-TiB FGM 0.0014595 0.0013910 0.0006638 599.9
8 7-Layer Ti-TiB FGM 0.0017830 0.0014677 0.0007573 545.9
9 7-Layer Ti-TiB FGM 0.0018890 0.0017203 0.0007016 534.6
10 7-Layer Ti-TiB FGM Failed Failed Failed

At the conclusion of some of the impact events, it is noteworthy that the strain

values do not become zero as in other instances. This effect could be interpreted as

residual plasticity in the specimens, but the evidence does not seem to support this.

The plate specimens did not exhibit any visual indications of permanent deformation

after impact except for tiny dimples on the surface of Ti-rich specimens (tests 1-4).

The contact site on FGM plates could not be discerned. Further, during mock tests

prior to formal testing, small impacts to the center of a dummy plate with a hammer

would occassionally cause a measured voltage offset in the system after impact that

needed to be corrected prior to subsequent testing. It is very probable that this is an

effect associated with the adhesive system used to bond the strain gages to the plate

specimens. This adhesive system is known for its resilience, especially in tension with

large deformations, but the loading-unloading characteristics are not well understood.

Finally, a note on some of the observed oscillations in the strain histories is in

order. The strains in the histories are tensile throughout the majority of the event,

and the tensile strains in each gage appear to be moving in concert with each other

over the length of the history. The significant strains in the histories occur over a

1000-1200 microsecond window. This would seem to indicate that the deformation

of the plate is primarily a transverse global deformation as illustrated in Figure 5.25.
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Figure 5.25: Apparent flexure of plate during impact events
in Dynatup tests.

This assumption will be studied more in depth and verified in later chapters. Aside

from sharp oscillations early in some of the histories (this will later be shown to

be an electrical disturbance, not a plate behavior), there are only minor oscillations

occurring through the majority of the history. Free vibration effects do not seem

to be prevalent in the plate response; that is, oscillations between compressive and

tensile strain on the bottom surface of the plate are not prevalent. The plates do not

vibrate/oscillate significantly through the loading and unloading of the plate from the

tup, nor do they oscillate at the end of the impact event as might be expected for

an impulsive load. In Chapter VI, these and other oscillations in the strain histories

will be studied in-depth. At this point it is difficult to draw any more meaningful

conclusions without further study.

5.2.3 Post-Test Inspection of Plate Specimens. Ultrasonic immersed through-

transmission scans were performed with the plate specimens after the impact tests

with those plates that survived testing. The results are shown in Figure 5.26. The two

monolithic 15% Ti-85% TiB plates did not survive their respective tests, and neither

did FGM plate specimen 10. The C-scans of the post-impact plates were performed
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at the same settings as before; sonic pulses were generated with amplitudes of 51 dB

at a frequency of 2.25 MHz. The two monolithic 85% Ti - 15% TiB plates do not

show appreciable damage after the impact events, although the location of the tup

impact site can clearly be distinguished. The three surviving FGM plates for the most

part did not incur additional damage, although plate 8 has two small areas along a

straight line extending from the center of the plate to the boundary that appears to

indicate some small damage accumulated in this area. Overall, it would appear that

the impacts to the surviving plates caused minimal damage and it is therefore likely

that the impacts induced only elastic deformations to failure.

5.3 Closing Remarks

In closing, the design of a novel test method for collecting strain histories in

plate specimens subject to impact loading has been presented. The requirements of

this test method were:

1. Utilize a test apparatus that can deliver a low- to medium-energy impact to a

specimen under highly controlled, highly reproducible conditions.

2. Configure plate specimens such that analytical and computational comparisons

of the impact event can readily be made.

3. Provide sufficient instrumentation to characterize the impact event along with

the material response.

All of these requirements were met, the key results from the plate impact tests were

presented. Ten plate impact tests were conducted. Six of the tests involved monolithic

mixtures of Ti-TiB; four of the tests involved functionally graded Ti-TiB plates. Eight

of the ten tests were successful, with strain histories collected throughout the duration

of the impact events. A pre- and post-impact test inspection of the specimen plates

seems to indicate minimal damage to the plates after impact, thus indicating that the

impacts were primarily elastic in nature. Almost no visible plasticity was observed

in any plate specimen after impact. The lack of visible plasticity and brittle fracture
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Figure 5.26: Through-transmission immersed ultrasonic C-
scans of Ti-TiB monolithic and functionally graded plate spec-
imens after impact testing. The color contours represent the
percentage of the peak signal from the piezoelectric emitter (51
dB at 2.25 MHz frequency) detected by the piezoelectric re-
ceiver underneath the specimen according to the scale shown.
Note that three specimens failed the initial impact tests.
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occurring in three specimens indicates that the Ti-TiB mixture is very likely elastic

to failure. The goal of these tests was not to perform a material study of the Ti-TiB

system, but rather to obtain strain histories that can be compared to analytical and

computational models applied to FGMs. In light of this, the experiments were highly

successful. The design of this experimental technique and presentation of results in

this chapter successfully accomplishes the first objective for this research (listed in

Chapter I): design and conduct impact experiments on metal-ceramic FGM plates to

record strain histories at various locations on the plate over the duration of the impact

event.

The next chapter (Chapter VI) discusses a finite element model constructed to

model these impact tests and takes the results from the finite element model and

compares them to the experimental results of this chapter. A valid finite element

model will allow the physics of the impacts to be analyzed in greater detail so that a

fundamental understanding of the impact response of FGMs is obtained.
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VI. Finite Element Modeling of Plate Impact Experiments

Finite element models (FEMs) were developed to study the impact experiments

described in the previous chapter. The second objective of this research was

to construct a finite element simulation of the impact experiment that is sufficiently

sophisticated to capture the dynamic effects of an impact load that is at the same time

easily replicated by scientists and engineers in practice. The manner in which the

finite element models were constructed and this objective met are presented in this

chapter. These models are a very important part of this research in that if the finite

element simulations match the observations and data collected during the experiment,

it is possible to infer other behavior of the FGM in areas where data was not directly

collected. If the FEM does not effectively emulate the physical experiment, the com-

puter simulation is of no value and no conclusions of consequence can be obtained

from its use. This chapter will demonstrate that the FEM constructed to study the

FGM plate impact experiments is indeed a valid simulation, and a wealth of infor-

mation can be construed from the model related to the physics of the impact events.

This represents a significant contribution to the study of FGMs, namely, a simulation

that has been validated based on correlation to experimental data.

6.1 Finite Element Model Development

The finite element models were constructed in the commercial FEM software

ABAQUS. The discussion here will concentrate on the high-level details of the FEM’s

configuration only and will not present many details of the associated theory; this will

be left to Appendix C. A picture of the experiment FEM is shown in Figure 6.1 with

all the major components labeled.

6.1.1 Plate Fixture Finite Element Model. The design and specifications

of the plate fixture were described in detail in Chapter V. The nominal dimensions

provided in the drawings (Figures 5.5-5.7) were used to construct the finite element

models for the plate fixture components.
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Figure 6.1: Finite element mesh and model for the plate im-
pact experiments.

6.1.1.1 Top, Bottom, and Spacer Plate Components. The fixture com-

ponents were visually inspected after testing and found to be virtually undeformed.

The components are thus assumed to require only elastic material properties. The top,

bottom, and spacer plate components of the fixture were machined from 304-stainless

steel, as mentioned in Chapter V. Standard material properties for this grade of steel

are shown in Table 6.1. Each component was meshed with linear, isotropic, reduced-

integration, eight-noded three-dimensional solid brick elements (the theoretical details

associated with these elements are included in Appendix C). An example element is

shown in Figure 6.2. The part was manually meshed in order to maintain a consistent

mesh and prevent formation of irregularly shaped elements that can cause numerical

problems during solution. The finite element mesh for the bottom plate component is

shown in Figure 6.3. The bottom plate contains 7935 nodes and 5656 elements. The

spacer plate FEM is shown in Figure 6.4; the model contains 3800 nodes and 2560

elements. The finite element mesh for the top plate is shown in Figure 6.5; the model

for this part contains 4280 nodes and 2944 elements.
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Figure 6.2: Eight-noded linear brick element as used in the
finite element model.

Table 6.1: Material properties for 304 stainless steel
applied to fixture plates and all screws in the FEM
[10], [86].

Property Value Units

Density, ρ 8030 kg/m3

Young’s Modulus, E 193.0 GPa
Poisson’s Ratio, ν (minimum) 0.29
Shear Modulus, G 74.86 GPa
Yield Stress, σy 269 MPa
Ultimate Stress, σult 600 MPa
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Figure 6.3: Plate specimen fixture; bottom plate component
finite element mesh.

Figure 6.4: Plate specimen fixture; spacer plate component
finite element mesh.
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Figure 6.5: Plate specimen fixture; top plate component finite
element mesh.

6.1.1.2 Plate Fastener Screws. The eight plate fastener screws were

0.635-cm stud diameter fine-threaded Unified hex cap screws (1/4-28 UNF; the Unified

standard is nominally in units of inches, however, all units here are in cm to remain

consistent with the metric units used throughout this work; see [86] for the specific

dimensions of these screws) and were composed of 18-8 grade stainless steel. The

simplified finite element model of the screws is shown in Figure 6.6. Note that “18-8”

refers to stainless steels with a composition of 18% chromium and 8% nickel. Since

304-stainless steel falls within the more general 18-8 classification [86], the material

properties for 304-stainless steel in Table 6.1 were used for the eight plate fastener

screws for simplicity. The same screws were used in all impact tests and were virtually

undeformed after testing; therefore only elastic properties were input into the finite

element models. Each screw’s hexagonal head was 0.397-cm thick and the width across

the flats was 1.111-cm. The round washers used in conjunction with the screws were

the same 18-8 stainless steel as the screws and were 0.198-cm thick with an outside

diameter slightly larger than the width across the flats of the hex-head. The simplified

finite element model consists of a round cylinder for the head in lieu of the hex-head
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geometry. The cylindrical head has a diameter equal to the width across the flats of

the hex-head screw and the thickness is equal to the the hex-head plus the washer

thickness (thus effectively combining the washer and head into one geometry). The

stud length is equal to the thickness of all three fixture plates sandwiched together

(3.81-cm). The screws were meshed with linear, isotropic, reduced-integration, eight-

noded three-dimensional solid brick elements. Each screw contains 1300 nodes and

1040 elements. There are eight screws in the model and thus the total number of nodes

and elements contained in the plate fastener screws are 10400 and 8320, respectively.

6.1.1.3 Dynatup Attachment Screws. The four Dynatup attachment

screws were 0.9525-cm stud diameter coarse-threaded Unified hex cap screws (3/8-16

UNC; the Unified standard is nominally in units of inches, however, all units here are

in cm to remain consistent with the metric units used throughout this work; see [86]

for the specific dimensions of these screws) and were composed of 18-8 grade stainless

steel (material properties in Table 6.1 apply). The simplified finite element model

of the screws is shown in Figure 6.6. Each screw’s head was 0.595-cm thick and the

width across the flats was 1.429-cm. The round washers used in conjunction with the

screws were the same 18-8 stainless steel as the screws and were 0.198-cm thick with

an outside diameter slightly larger than the width across the flats of the hex-head.

The simplified finite element model consists of a round cylinder for the head in lieu

of the hex-head geometry. The cylindrical head has a diameter equal to the width

across the flats of the hex-head screw and the thickness is equal to the the hex-head

plus the washer thickness (thus effectively combining the washer and head into one

geometry). The stud length is equal to the thickness of the bottom plate (the reason

for this is discussed later) and the diameter of the stud is 0.9525-cm. Each screw was

meshed with linear, isotropic, reduced-integration, eight-noded three-dimensional solid

brick elements. Each screw contains 641 nodes and 480 elements. With four screws

included in the model, the total number of nodes and elements for these components

is 2564 and 1920, respectively.
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Figure 6.6: Simplified finite element models for the eight
plate fastener screws (left) and four Dynatup attachment screws
(right).

6.1.2 Tup and Load Cell Finite Element Model. The crosshead, load cell,

and tup assembly in the Dynatup apparatus represent a very unique part of the FEM

as a whole. The best scenario for modeling the Dynatup apparatus is to include nearly

all the parts that make up the apparatus. This would not be a trivial undertaking

in constructing the model and would further be computationally expensive. The

primary function of the crosshead, load cell and tup assembly was to transfer energy

and momentum to the target specimen through contact with the tup and specimen.

A highly simplified model of this assembly was developed that would serve both of

these purposes (referred to as simply the “tup FEM” or “tup model” from this point

forward). The model is shown in Figure 6.7. It consists of two unique sections: (a) a

tup section (shown in dark green in Figure 6.7) & (b) a crosshead-mass section (shown

in yellow in Figure 6.7). The tup section is composed of two cylindrical pieces; one

piece is 3.175-cm in diameter and 13.97-cm long and one piece is 2.54-cm in diameter

and 4.445-cm long. At the end of the smaller cylinder is a hemispherical tip of radius

1.27-cm. The larger cylinder represents the load-cell and the smaller cylinder with

hemispherical tip is the tup. The net length of this section is thus 19.69-cm. The
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Figure 6.7: Simplified finite element model of mass, load cell,
and tup in Dynatup apparatus.

crosshead-mass section is a cylinder 2.54-cm long and 3.175-cm in diameter. The net

length of the entire tup model is thus 22.23-cm. The dimensions for the tup section

in the FEM were chosen to be similar to those associated with the tup and load-cell

on the Dynatup in the laboratory.

As stated in Chapter V, the actual composition of the tup was not known and

was not provided by Instron. A set of material properties thus had to be assumed

for the tup section, and 4340 hardened-alloy steel was chosen; material properties are

found in Table 6.2. The crosshead-mass section was designated as a pseudo-material;

essentially the purpose of this section was to store the entire mass of the crosshead. In

Chapter V, it was explained that the mass of the crosshead assembly during testing

was set at 13.06 kg. This mass included the crosshead, load cell, and tup and therefore

represented the entire body of mass traveling down the guide rails once the crosshead

assembly was released from rest. Knowing the dimensions of the components of the

FEM tup model, this mass was distributed through the volume of the tup model. The

mass contained in the tup section of this FEM was calculated based on the density

of 4340 hardened steel (Table 6.2) and can be easily shown to be 1.072 kg. The

remaining portion of the 13.06 kg not contained in the tup section is then 11.988 kg.

A density for the pseudo-material in the crosshead-mass section can then be found

to be 596,121 kg/m3 based on the dimensions of this section. The elastic modulus

was set very high in comparison with the rest of the model components; essentially
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Table 6.2: Material properties for 4340 hardened
alloy steel applied to tup section of tup finite element
model [21], [10], [86].

Property Value Units

Density, ρ 7800 kg/m3

Young’s Modulus, E 200.0 GPa
Poisson’s Ratio, ν (minimum) 0.29
Shear Modulus, G 77.52 GPa
Yield Stress, σy 860.0 MPa
Ultimate Stress, σult 1310 MPa

Table 6.3: Material properties for the pseudo-
material applied to the crosshead-mass section of tup
finite element model.

Property Value Units

Density, ρ 596121 kg/m3

Young’s Modulus, E 5000 GPa
Poisson’s Ratio, ν (minimum) 0.30

the crosshead-mass section behaves like an rigid mass attached to a deformable tup.

The properties of this pseudo-material are found in Table 6.3. The tup model was

meshed with linear, isotropic, reduced-integration, eight-noded three-dimensional solid

brick elements. The tup model contains 12190 nodes and 11008 elements total.

6.1.3 FGM Plate Specimen Models. Two distinct finite element models

were developed to study the FGM plates. The first model is one that assumes that

each individual layer in the FGM behaves as a homogeneous, isotropic material. The

second model assumes that there are in fact two distinct phases of material randomly

distributed based on the volume fraction ratio of the constituents. Each model is

described in greater detail in the following subsections.

6.1.3.1 Homogenized-Layers Model. In Chapter III, several material

models were presented where engineers and scientists used analytical formulas based

on physical principles and underlying material assumptions to homogenize material

124



Figure 6.8: Comparison of actual seven-layer Ti-TiB FGM
(left) and FEM representations: homogenized-layers model
(middle) and two-phase model (right). In the FEM represen-
tations, Ti-rich areas are white and TiB-rich areas are black.

properties of a continuum with two or more constituents. Some of these models were

formulated given an ordered distribution of the constituents that follow a repeating

pattern of representative volume elements. Others assume random distributions of the

constituent materials. In either case, the goal is to average the contributions of each

material to a constitutive model governing the response of the continuum as a whole.

This class of finite element model will do exactly this; that is, take known information

of the distributions of Ti and TiB in the monolithic and functionally graded plates

and compute homogenized material constitutive relations for each mixture of Ti-

TiB. In Chapter V, it was hypothesized that the plates behave elastic to failure.

Therefore, the constitutive relations in the FEM will be elastic. No failure model was

incorporated in the constitutive relation. Typically strain rate-dependent plasticity

and failure models are required to accurately model impact events, however, the

strain-rates were relatively low in all the impact tests (this will be given a thorough

treatment in Chapter IX) and only one FGM specimen failed. Strain rate-dependent

effects are generally more important when incorporating yield, plasticity, and failure

in simulation. None of these effects are included for reasons already discussed, so for

now the elastic constitutive models will suffice.
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The volume fraction and thickness data in Table 4.4 were used in conjunction

with the material properties for Ti (Table 4.1) and TiB (Table 4.2). (While these base-

line properties were used to initially assess the validity of the finite element model, in

Chapter VIII the properties will be optimized to their actual values using a parame-

ter estimation technique.) This information was then applied to one of the material

models in Chapter III to calculate the elastic modulus, Poisson’s ratio, and density

of each individual layer. In the case of the monolithic Ti-TiB plates, only one layer

of constant volume fraction exists so only one set of material properties is generated.

In the case of the FGM specimens, seven sets of homogenized material properties are

generated for each individual layer.

A Matlabr script was written to efficiently calculate the material properties for

each monolithic and functionally graded plate configuration given a specific material

model (classic rule-of-mixtures, self-consistent model, and Mori-Tanaka estimates).

Given the 7.62 cm x 7.62 cm–1.27 cm thick plate geometry, the script was also designed

to generate the finite element nodal grid and element mesh for each plate by assigning

mesh densities along the three major dimensions of the plate. This script therefore

allowed the plate mesh to be constructed very quickly and efficiently, and the plate

geometry could be imported into ABAQUS to fit into the plate fixture model. This

eliminated the need to calculate material properties for individual layers by hand and

also eliminated the need to manually reconstruct the plate model if the plate mesh

needed to be adjusted. The Matlabr script generates a text-based input file as its

output, and this text-file is imported and read into ABAQUS.

The mesh for the specimen plates was determined based on an informal con-

vergence study that considered the mesh that would be the most effective from both

a computational and solution convergence standpoint. The plate mesh used, based

on the study, was 14 elements through the thickness of the plate, and 42 element

divisions along each side of the plate; thus the total number of nodes and elements

for the plates were 27735 and 24696, respectively. The specimen plate model was

meshed with linear, isotropic, reduced-integration, eight-noded three-dimensional solid
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Figure 6.9: Comparison of homogenized-layers and two-phase
plate specimen FEMs; see also Figure 6.8.

brick elements. For the seven-layer FGM plates, each layer was two elements thick

(two elements thick per layer multiplied by seven layers gives the 14 element thickness

of the plate). The monolithic plates used the same mesh as the FGM plates, however

note again that each monolithic plate is a single-layered construction. Each layer of

elements in the plate (14 in all) was assumed to adhere perfectly to the layers imme-

diately above and below it. This was done to remain consistent with the assumption

of perfect adhesion of layers in the composite plate theory of Chapter III. A note on

the size of each element as compared to the size of a potential representative volume

element of both constituents will be included momentarily. The plate FEM for the

homogenized-layers model is shown in Figure 6.9.

6.1.3.2 Two-Phase Model. It can be seen in the SEM photographs

of Ti-TiB mixtures in Chapter IV, Figures 4.5-4.11 the distribution of Ti and TiB

in reaction-sintered composite systems is not well ordered and is random in nature.

In fact, TiB clusters are very common even at very low volume fractions of TiB. To

address this random distribution of materials, a second finite element model class was

developed, the so-called “two-phase” finite element model. In this model, individual

cells are distributed that contain only titanium and other cells that contain only ti-
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tanium boride with no mixing of the two constituents. In Figure 6.8, this random

mixing of cells (or “elements”) is illustrated, with white cells containing strictly tita-

nium material properties and black cells containing strictly titanium boride material

properties. In some respects, this model is more simple than the homogenized-layers

model in that only two sets of material properties need to be known, that of the

constituents. In other respects, the two-phase model can be more complicated in that

the random distribution of constituents can result in clustering of the constituents

that make it extremely difficult, if not impossible, to study analytically.

Similar to the homogenized-layers model, a Matlabr script was written to gen-

erate the nodal grid and element mesh for the specimen plate. No analytical material

models are required since the two-phase model is simply constructed by randomly dis-

tributing the phases of each constituent. Once an element containing the properties

of a specific constituent is defined, the script assigns the properties of the constituent

to that element. The key advantage to running a script to generate the mesh is

that Matlabr (or any other such program) can quickly and efficiently assign the ele-

ment properties as opposed to manually accomplishing such a task in the ABAQUS

graphical user interface one element at a time.

The script works as follows. First, the mesh densities along the major dimen-

sions of the plate are assigned. The script then looks at the location of each layer

of elements as compared to its analagous location in an actual plate specimen. The

program then takes the volume fraction ratio of constituents at that location in the

plate and applies it to the element layer in the FEM. Based on the volume fraction

ratio at that element layer and the number of elements in the layer, the program as-

signs a set number of elements to be composed of one constituent and the remainder

of elements to be composed of the second constituent.

As an example, suppose we have a seven-layer Ti-TiB FGM plate with 14 el-

ements through the thickness; each of the seven FGM layers is two elements thick.

Suppose now the FEM of the plate has 100 elements per element layer (1400 elements
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in all). FGM layer 1 (Table 4.4) is composed of 85% TiB and 15% Ti. The two

element layers in the FEM corresponding to actual FGM layer 1 would contain 85

elements of TiB and 15 elements of Ti each (170 elements of TiB and 30 elements of

Ti total). The only remaining task is to then take these elements and distribute them

randomly.

A random number generation feature in Matlabr was used to accomplish this.

Note that the choice of a random number generator is not really important, provided

that the constituents are truly distributed in a random fashion. Essentially, elements

of TiB were assigned a designation of “1” and elements of Ti were assigned a desig-

nation of “2.” These designations were randomly mixed together and then applied to

the list of elements in the given layer.

Continuing with the example, the top element layer corresponding to actual

FGM layer 1 had 85 TiB elements and 15 Ti elements. 85 “1” designators and 15

“2” designators are placed into a 100 x 1 vector. The 85 “1” and 15 “2” designators

are removed one at a time, from the initial vector and placed into a second 100 x 1

vector to a location (between 1 and 100) chosen without replacement by the random

number generator. Eventually the entire vector is filled and this list is applied to

the list of elements in that element layer. Another example of the output of this

algorithm is illustrated in Figure 6.8, in which case the seven-layer FGM of Table 4.4

is modeled over a 28 layer x 28 wide grid. The program rounds up the number of

elements required for TiB in each layer if the volume fraction of TiB multiplied by

the number of elements in a layer is not an integer; the number of Ti elements is then

determined after rounding occurs.

The mesh for the specimen plates using this model was the same as that used

for the homogenized-layer model: 14 elements through the thickness of the plate, and

42 element divisions along each side of the plate. The total number of nodes and el-

ements for the plates were 27735 and 24696, respectively. The specimen plate model

was meshed with linear, isotropic, reduced-integration, eight-noded three-dimensional
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solid brick elements. For the seven-layer FGM plates, each FGM layer was two ele-

ments thick. The monolithic plates used the same mesh as the FGM plates, however

note again that each monolithic plate is a single-layered construction in which case

the elements of constituents are randomly distributed under the same volume frac-

tion throughout the entire plate. Each layer of elements in the plate (14 layers in

all) was assumed to adhere perfectly to the layers immediately above and below it.

Additionally, each element was assumed to adhere perfectly to each adjacent element,

regardless of whether or not adjacent elements had mismatching properties. Whether

or not this assumption is valid for the Ti-TiB FGM or any other FGM system is very

much dependent on the individual mixture and constituents. Since it is not the goal

of this work to focus on material science aspects, for now it will be assumed that this

assumption is valid for elastic analyses as is the case here. The plate FEM for the

two-phase model is shown in Figure 6.9.

One final comment on the choice of element size in the models, especially the

two-phase model, is in order. According to the chosen mesh size, each element in

the specimen plate FEMs has the dimensions 1.81 mm x 1.81 mm x 0.907 mm. In

Figures 4.5-4.11, one could estimate a typical TiB whisker to be on the order of about

50 micrometers in length and 5 micrometers in maximum diameter. Comparing the

largest dimensions of an individual element, 0.00181 m, to the largest dimension of

a TiB whisker, 0.000050 m, the elements in the model are on the order of 36 times

larger than that of an average TiB whisker. Further, the geometry of the element,

essentially a 2 x 2 x 1 brick, is starkly different from that of the needle, which can

have a length-to-diameter ratio of 10:1. The key assumption in the two-phase FEM

then can be stated as each element, composed of an individual constituent, contains a

conglomerate of that constituent concentrated in the volume occupied by that element.

This is essentially a worst-case scenario on the micro-mechanics level that more or less

can, but generally does not, occur in the mixture of materials. All of these facts are

important to the analyst since the comparison between the actual FGM composite and

the two-phase FEM is most definitely not one-to-one. However, if the goal is to follow
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the macro-mechanic behavior of the FGM, the discrepancy between the geometries is

less important than it is on a micro-mechanics scale.

6.1.4 FEM Loads and Constraints. To this point, the finite element con-

struction and mesh of the individual components of the Dynatup experiments have

been presented. The finite element model required thoughtfully applied loading and

constraints throughout to ensure that the FEM behaved as close to the actual exper-

iment as possible. In this section, the loads and constraints are discussed in depth.

6.1.4.1 FEM Boundary Conditions and Constraints. The following is

a list of all the boundary conditions and constraints placed on the FEM. Note the

coordinate system shown in Figure 6.1 and reference planes in Figure 6.10. The 1-axis

runs parallel to the width of the fixture; the 2-axis runs parallel with the length of

the bottom plate component; the 3-axis is parallel to the axis of the tup (this axis

will be referred to occassionally as the “vertical axis” or “vertical direction;” reader

take note).

1. The bottom surface of the bottom plate was constrained from vertical displace-

ment only. This surface is in direct contact with the base of the Dynatup. The

Dynatup base is made of 5.08-cm steel and is not easily deformable; thus this

assumption was deemed prudent.

2. An imaginary plane parallel to the 13-plane passing through the center of the

fixture assembly was constrained such that all nodes and element faces con-

tained directly in this plane were not allowed translations parallel to the 2-axis

direction. This included the bottom, spacer, and top plates of the fixture as well

as the specimen plate; nodes or elements attached to the tup and plate fastener

screws were not assigned this restriction.

3. An imaginary plane parallel to the 23-plane passing through the center of the

fixture assembly was constrained such that all nodes and element faces con-

tained directly in this plane were not allowed translations parallel to the 1-axis
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Figure 6.10: Reference planes used in FEM constraints.

direction. This included the bottom, spacer, and top plates of the fixture as well

as the specimen plate; nodes or elements attached to the tup and plate fastener

screws were not assigned this restriction.

4. The four Dynatup attachment screws were threaded into the Dynatup base. The

stud length of these screws were shortened to a length equal to the thickness

of the bottom plate of the fixture (1.27-cm). Once threaded and torqued to

the required level, it is assumed that the screws could not be pulled out of the

Dynatup base. Thus, the bottom surface of each Dynatup screw (that is, the

surface contained in the same plane as the Dynatup base-fixture bottom plate

interface) was constrained from vertical deflection only.

5. The axes of the four Dynatup attachment screws were constrained from motion

in the 1 and 2-directions.

6. The axis of the tup was constrained from motion in the 1 and 2-directions.
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7. Recall that the plate fastener screws were threaded into the bottom plate only.

The holes in the spacer and top plates were through-holes only. In the FEM,

the holes in the bottom plate were made to be the same diameter as the stud

diameter of the plate fastener screws; the holes in the other two plates were

made slightly larger. Therefore, a small portion of the outside surfaces of the

screws along the stud length will coincide with the surfaces inside the holes of the

bottom plate throughout the thickness of the plate. To simulate a tight, rigid

connection between the fastener screws and the threaded holes of the bottom

plate, the nodes attached to the coincident surfaces of the bottom plate and the

screws in each hole were constrained to have identical displacements in all three

principal directions. This constraint is assumed to model a threaded connection

without requiring an actual model of the threads themselves.

6.1.4.2 Contact Interactions. The commercial finite element code

ABAQUS has the capability of modeling contact interactions between various com-

ponents of the model assembly. Contact in the realm of finite element theory is

a highly nonlinear analysis and requires special treatment. It is important to note

that there are many contact laws that can be applied, but the law used exclusively

in this finite element model was that of rigid-hard contact. This contact law is the

simplest contact law used by ABAQUS. The main feature of this law is that it is

essentially an on-off law where the pressure applied from one object to another is zero

when the objects are not in contact and positive when in contact; the magnitude of

pressure is a function of the interpenetration of the two object surfaces in contact.

Other more complex contact models incorporate pressure-deflection relations that are

material-dependent and usually require empirical data to define the relation. Since

empirical data relating pressure and displacement in the tup and Ti-TiB mixtures

was not available, the hard contact law was used throughout the FEM (hard contact

does not require a pressure-displacement relationship). Some of the more pertinent

details associated with ABAQUS’ treatment of contact interactions are presented in
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Appendix C. The discussion here is limited to describing those locations in the model

itself where contact laws were established.

The contact law is defined between the following surfaces (see Figure 6.11:

1. The interface of the bottom and spacer plates of the fixture.

2. The interface of the spacer and top plates of the fixture.

3. The interface of the specimen plate and the fixture bottom plate.

4. The interface of the specimen plate and the fixture top plate.

5. The top surface of the specimen plate and the surface near the tip of the tup.

6. The top surface of the fixture top plate and each surface underneath the head

of each plate fastener screw.

7. The top surface of the fixture bottom plate and each surface underneath the

head of each Dynatup attachment screw.

6.1.4.3 FEM Loads. In the plate impact experiments, the most im-

portant load delivered to the plates was the impact load from the tup when the

potential energy stored in the crosshead assembly was converted to kinetic energy

as the crosshead was released from rest. In the assembly of the FEM, the tup was

placed above the specimen plate such that only 0.1-mm of separation existed initially

between the tup and the top surface of the plate at the outset. The speed of the

crosshead and tup just above the impact site on the specimen plate was measured in

each test during the experiments. A velocity field was applied to the tup model in the

FEM with a magnitude equal to the speed measured during the test. Incidentally, the

velocity field has components in only the negative 3-direction (vertical) and thus the

measured speed and the magnitude of the velocity field (through the vertical compo-

nent) are identical. This velocity is applied to all volumes within the tup model and

includes all nodes and elements contained in the volumes. This velocity is applied only

as an initial condition within ABAQUS. The tup maintains this speed until contact is
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Figure 6.11: Illustration of selected contact areas between the
plate fixture, specimen plates, and fastener screws.
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established between the tup and the specimen plate. Once this occurs, the dynamics

of the system take over and the instantaneous velocity of the tup must be determined

based on the solution to the finite element model. The kinetic energy of the crosshead-

/tup is maintained because the tup FEM has the same mass as the crosshead/tup

assembly in the plate impact tests and the velocity is the same as that from the tests

where it was measured just above the impact site. The initial separation between the

tup and plate in the FEM was for convenience in tracing the response. In the FEM,

the displacements, strain, and stress are zero until contact is initiated. Once contact

is initiated, the displacement, strain, and stress are non-zero. Thus, when studying

a history of the FEM’s solution, it is clear where contact (impact) initiated and this

can be correlated directly to the instant impact occurred in the experimental strain

histories (recall that the oscilloscope stored strain data in pre-trigger mode just before

the impact occurred). Note that this velocity field is not the same as a gravitational

acceleration field and the effects of gravity were not included in the FEM. It was found

that including a gravitational field in the model had a negligible effect on the strain

histories. It is not difficult to see how this would be the case given (1) the short period

of loading from the tup, (2) the very small deflections that occurred in the plate (that

is, the potential energy stored in the system is primarily due to straining in the plate

after impact and less a change in vertical height), and (3) the kinetic energy at the

instant impact occurs is the same as in the test even though only the velocity field is

included in the model.

It was also mentioned that the eight fixture attachment screws and the four

Dynatup attachment screws were torqued to loads of 20 N-m and 35 N-m respec-

tively during each test. These torque loads were applied to secure the specimen plate

and secure the fixture in the Dynatup apparatus. It was observed that these torque

loads did not appear to visually deform the fixture plates or the screws themselves

during screw pre-loading or after impact tests occurred. Further the same screws

were used in all tests without replacement. A subsequent analysis of the force loading

on the screws using analytical and finite element techniques verified the hypothesis
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that the deformation in the fixture component plates and screws was negligible during

pre-loading of the screws. For this reason, the torque loading on the screws was left

out of the finite element model. Analysis further showed that the deformation of the

specimen plates during impact induced noticeable lifting and separation of the fixture

plates from the specimen leveraging against the fixture. This action produced stresses

in the plate fastener screws as they resisted the leveraging and fixture plate separa-

tion. With the screws in direct contact with the plates and threading accounted for

in the constraints of the system, it was deemed that this was sufficient to emulate the

behavior of the fixture plate fastening. The screws in the finite element model, espe-

cially the eight fixture attachment screws, merely serve to prevent separation of the

fixture component plates as the specimen plate deforms on impact. The constraints

on the attachment screws and the contact laws applied serve this purpose without

applying an additional torque load to the fasteners.

6.2 Validation of Finite Element Model

6.2.1 Solution of the FEM. The commercial code ABAQUS was used to

simulate the tests. Recall in the plate experiments, the data acquisition system was

set to collect strain gage histories over a period of 2000 microseconds. It was therefore

appropriate to analyze the FEM response over the same time window. Therefore, all

simulations of the experiments were performed over 2000 microseconds of the event

only. Explicit integration (via the solution module in ABAQUS called “ABAQUS/-

Explicit”) was the numerical method used to solve the governing equations to take

full advantage of its computational efficiency and its inherent effectiveness at solv-

ing dynamic, wave-oriented models (see Appendix C for more in-depth discussion on

the explicit integration technique and the solution module ABAQUS/Explicit). The

explicit integration technique is one that is conditionally stable, meaning that as the

numerical integration is performed it is necessary to choose a time step that is suf-

ficiently small to prevent the numerical calculations from becoming unbounded and

therefore unrealistic. ABAQUS has internal algorithms for choosing time increments
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that are not only small enough to prevent the solutions from becoming unbounded,

but also ones that can vary the size of the time step to increase the computational

efficiency of the algorithm. A variable time step was therefore chosen in the solution

so that both of these ends could be simultaneously met. The output database gener-

ated from the solution of the FEM stored 1000 data points over the 2000 microsecond

solution window. Thus, displacement, strain, and stress information was stored every

two microseconds. Given the 2000 microsecond length of the event and the relatively

small oscillations evident in the experimental strain histories, 1000 data points was

sufficient to capture the physical dynamics of the impact event. FEMs that collected

more data points over the solution window were found to produce insignificant im-

provements at the expense of larger output databases. As a final note, only solution

data associated with the plate specimens were output to the solution database. The

plate specimens were of primary interest and no data was collected in the experiments

apart from them. This also helped keep the solution output databases to a more man-

ageable size. Note that damping was not included in the FEM simulations. Values

for damping coefficients were not available for the Ti-TiB system at the time of this

study. An informal study of the matter showed that the addition of artificial values of

damping into the FEM significantly increased the computational cost of running the

simulations with negligible effect on the strain histories. While no viscous or struc-

tural damping was directly applied to the model, it is true that ABAQUS/Explicit

incorporates bulk viscosity parameters to damp out high frequency ringing oscillations

that can affect the solution. Note that the bulk viscosity used in ABAQUS/Explicit is

an effect introduced to assist the numerical implementation of the FEM solution and

is not part of a material’s constitutive response [3].
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Figure 6.12: Bottom view of experiment FEM showing nodal
locations corresponding to nominal location of strain gages 1-3;
also node at center of plate on bottom surface of specimen.

Strain data was collected specifically from nodes directly under each strain gage

and only strain outputs oriented along the principal direction of the strain gages were

used to compare with the experimental strain histories. This is an important point to

remember because the state of strain is a complex three-dimensional state at virtually

all points in the plate during the impact event and the strain gage measures only the

component of strain (directly) along the principal direction of the gage. Figure 6.12

shows the location and nodes used in the FEM strain history plots. Since strain gage

4 was not used in the tests, only strain gages 1-3 are shown in the figure.
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6.2.2 Strain Distribution Under Strain Gages. Given the size of the ele-

ments in the plate specimen mesh, the nominal size and location of each strain gage

encompasses 12 distinct nodes (arranged in a 4 node x 3 node array, shown in Figure

6.13). Note that these are the nodes under the entire gage, not just the nodes under

the nominal location of the strain gage wire grid. This was done to look closely at

the variations in the strain history at small distances away from the nominal location

of the strain gage wire grid, noting that the average strain is measured by the data

acquisition system. These variations are important to consider since placement of the

gages was performed manually and could deviate very slightly from their nominal lo-

cations according to the drawing in Figure 5.10. As an example, consider the plots in

Figure 6.14. These plots show the FEM radial strain distribution (assuming the plate

is configured as a circular plate) along the axes containing strain gages 1-3 for both

the two-phase and homogenized-layers model when the plate is at its maximum center

deflection in test number 8 (see Table 6.4). The plots show the approximate nominal

locations of each strain gage, the radial location of the fixture circular opening, and

the portion of the distribution associated with the edge of the plate built-in to the

fixture. It is very clear from Figure 6.14 how significantly the strain distribution can

vary across a very small area. In Figure 6.15, the strain histories for each of the 12

nodes in strain gage 1 have been plotted over the entire impact event from test 8. The

strain histories for nodes 1-3, 4-6, 7-9, and 10-12 are very close to each other and it

is difficult to distinguish between their respective curves (see the nodal arrangement

in Figure 6.13). This is further evidence that a significant difference in the strain

distribution across the plate can occur over a very small area. While nothing has

been said so far regarding the validity of the finite element models, it is acceptable to

assume that these variations in strain do in fact occur and should be considered when

comparing the experimental strain histories to the FEM simulation strain histories.
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Figure 6.13: Strain gage used in impact tests for collecting
strain histories [127], shown with the approximate location of
the corresponding 12 nodes as arranged in the FEM analyses.

Figure 6.14: Strain variation that occurs along strain gage
axes, for (a) two-phase model, (b) homogenized-layers model
(Mori-Tanaka needles) in Dynatup test 8 at instant of maximum
plate deflection.
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Figure 6.15: Test 8 FEM strain histories across strain gage
1; twelve in all, one plot for each node (Mori-Tanaka Needles
FEM model) as shown in Figures 6.12 and 6.13. The histories
of higher strain magnitude are closer to the center of the plate.

6.2.3 FEM vs. Experiment—Maximum Strains. The validity of the FEMs

with the two-phase and homogenized-layers models of the plate specimens will be

assessed. The two-phase material model will be wholly considered. Of the four

material models (rule-of-mixtures, self-consistent method, Mori-Tanaka needles, and

Mori-Tanaka spheres) used in the homogenized-layers plate models, only the results

from the Mori-Tanaka needles (MT-N) material model will be discussed. This is

primarily for purposes of brevity. The Mori-Tanaka needles model is conceptually

the closest to the actual Ti-TiB composite model, and the material properties from

different volume fraction combinations of Ti and TiB using different material models

do not differ greatly (see Table 4.5). Therefore, the response of the homogenized-

layers models should be roughly the same since the difference between models lies

only in elastic material properties defined. Bottom line, if the FEM is valid using
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MT-N in the homogenized-layers configuration, it should be valid using the other

models as well.

Table 6.4 summarizes the tests as presented in Chapter V. This table will be

used for reference purposes in this chapter. The maximum strains over the histories

from each gage in each experimental test were first collected. The maximum strain

in each test and in each gage corresponds to the moment of maximum transverse

deflection at the center of the plate (refer back to Figure 5.25 in Chapter V for

illustration and discussion associated with this point). At the point of maximum

deflection during each test in the FEM, the strain distribution over the 12 nodes

under each gage was also collected. Given the variation of strain across the gage area

discussed earlier, it is possible to estimate some bounds within which the experimental

strain should lie. These bounds correspond to the maximum and minimum strains

from the 12 nodes at the point of maximum deflection in the FEM. Tables 6.5-6.7

detail the bounds from the FEM vs. the measured maximum strains in the histories

over each test. Note that the time corresponding to the maximum strain in the

experiments may not correspond directly to the time associated with the maximum

strains in the FEMs. This point will be addressed later in this section.

Recall that the plate specimens failed in tests 5, 6, and 10. In tests 5 and 6,

both of which used 15% TiB–85% Ti monolithic plates, no useful data was collected

prior to plate failure. The FEMs did not include failure criteria due to the lack of

concrete experimental data from which to build such a criteria. Without the criteria

included, ABAQUS simply solves the FEM based on the material data input for its

constitutive model (namely elastic modulus and Poisson’s ratio) and will predict an

elastic response without failure. Thus, the FEM results for tests 5 and 6 cannot be

assessed and must be assumed to be invalid given both tests induced failure of the

plates. For this reason, no FEM bounds on the strain distributions for these tests

will be presented. Test 10, and FGM plate test, is different. In this case, strain

history data was collected over a significant portion of the impact event. It cannot

be assumed that the strain at which the plate failed is the maximum strain that would
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Table 6.4: Summary of plate impact tests using the
Dynatup apparatus.

Test Crosshead/Tup Velocity, Impact
No. Description Mass (kg) Height (m) Actual (m/s) Energy (J)

1 100% Ti, 0% TiB Mono 13.06 0.508 3.040 60.35
2 100% Ti, 0% TiB Mono 13.06 0.635 3.476 78.90
3 85% Ti, 15% TiB Mono 13.06 0.508 3.050 60.75
4 85% Ti, 15% TiB Mono 13.06 0.635 3.479 79.04
5 15% Ti, 85% TiB Mono 13.06 0.381 2.585 43.63
6 15% Ti, 85% TiB Mono 13.06 0.508 3.050 60.75
7 7-Layer Ti-TiB FGM 13.06 0.508 3.040 60.35
8 7-Layer Ti-TiB FGM 13.06 0.635 3.412 76.02
9 7-Layer Ti-TiB FGM 13.06 0.762 3.765 92.56
10 7-Layer Ti-TiB FGM 13.06 0.889 4.078 108.6

have occurred had the plate not failed. Since further tests were not conducted at the

specific velocity and energy level, it can also not be assumed that the maximum strain

that occurred during the test is also the strain that will always induce failure. For

these reasons, test 10 will include FEM bounds but the experimental result will not

be tested against these bounds.

Inspecting Tables 6.5-6.7, nearly all the experimental maximum strains fall

within the bounds for the two-phase material model and the homogenized-layers ma-

terial model. In all tests, the maximum experimental strains for strain gages 2 and 3

fell within the FEM bounds for both material models. For tests 1 and 7, the maximum

experimental strains for strain gage 1 were outside the FEM bounds. In test 1, the

maximum strain in the experiment is not close to the FEM bounds (the two-phase

and Mori-Tanaka bounds for a 100% Ti plate will be the same since the equations

for the Mori-Tanaka needles model yield Ti properties when the volume fraction of

TiB is zero). In this instance, there was probably a serious issue with that particular

gage since the results for gages 2 and 3 were within the FEM bounds as were all

the gages used in test 2, a higher velocity test on the same material plate. In test

7, the maximum experimental strain was very close but just outside the bounds for

the two-phase model, but was within the bounds for the Mori-Tanaka needles model.
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Table 6.5: Maximum strain from experiments com-
pared to upper and lower bound strains directly from
strain gage area in FEM from two material models
(two-phase and Mori-Tanaka-Needles); strain gage 1.

FEM Strains
Max Strain, Two-Phase MT-Needles

Test Exper. Lower Bd. Upper Bd. Lower Bd. Upper Bd.

1 0.001184 0.001678 0.003639 0.001678 0.003639
2 0.002602 0.001886 0.004067 0.001886 0.004067
3 0.001712 0.001632 0.002842 0.001456 0.003121
4 0.001764 0.001753 0.003141 0.001581 0.003427
5 Failed
6 Failed
7 0.001460 0.001467 0.002804 0.001419 0.002858
8 0.001783 0.001566 0.003032 0.001520 0.003086
9 0.001889 0.001685 0.003247 0.001654 0.003316
10 Failed 0.001844 0.003534 0.001802 0.003607

Table 6.6: Maximum strain from experiments com-
pared to upper and lower bound strains directly from
strain gage area in FEM from two material models
(two-phase and Mori-Tanaka-Needles); strain gage 2.

FEM Strains
Max Strain, Two-Phase MT-Needles

Test Exper. Lower Bd. Upper Bd. Lower Bd. Upper Bd.

1 0.001173 0.0009628 0.002220 0.0009628 0.002220
2 0.001161 0.001045 0.002468 0.001045 0.002468
3 0.001603 0.0009078 0.002383 0.0008343 0.001906
4 0.001469 0.0009581 0.002609 0.0008930 0.002098
5 Failed
6 Failed
7 0.001391 0.0009047 0.001888 0.0008588 0.001829
8 0.001468 0.0009609 0.002029 0.0009141 0.001955
9 0.001720 0.001043 0.002176 0.0009999 0.002120
10 Failed 0.001142 0.002382 0.001086 0.002310
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Table 6.7: Maximum strain from experiments com-
pared to upper and lower bound strains directly from
strain gage area in FEM from two material models
(two-phase and Mori-Tanaka-Needles); strain gage 3.

FEM Strains
Max Strain, Two-Phase MT-Needles

Test Exper. Lower Bd. Upper Bd. Lower Bd. Upper Bd.

1 0.0005157 0.0003167 0.0009773 0.0003167 0.0009773
2 0.0009269 0.0003078 0.001078 0.0003078 0.001078
3 0.0008058 0.0003429 0.001085 0.0002790 0.0008473
4 0.0007834 0.0003475 0.001137 0.0002894 0.0009026
5 Failed
6 Failed
7 0.0006638 0.0004116 0.0009245 0.0003262 0.0008583
8 0.0007573 0.0004255 0.0009705 0.0003377 0.0009206
9 0.0007016 0.0004562 0.001053 0.0003723 0.001002
10 Failed 0.0004858 0.001145 0.0004108 0.001088

Strain gage 1 in test 7 can, for all intents and purposes, be considered within the

FEM bounds for the maximum strain.

While the maximum experimental strains for strain gage 2 fell within the FEM

bounds for both material models, one might note an inconsistency in the results for

this gage between tests 3 and 4. In these tests, the maximum strain measured for gage

2 actually decreased from test 3 to 4 despite the fact that the velocity and energy

in the plate impact actually increased. This is further evidence that the variation

in strain over the small gage area needs to be considered. The measured strains fell

within the bounds, but should not have decreased under ideal conditions. Further

inspection of Tables 6.5- 6.7 show that a similar response was found in strain gage 2

between tests 1 and 2 and strain gage 3 between tests 8 and 9, although the decrease

in strain was not as significant as in strain gage 2 between tests 3 and 4. To reiterate,

this is much more likely a consequence of strain gage placement slightly off the nominal

location than a defect in the data acquisition unit or a large deviation in the plates’

material properties. Another potential for discrepancy between the FEM and the

experiment is that the crosshead on the Dynatup was found to have some minor play
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in the assembly due to mechanical fittings that have loosened with time. Thus, it

is possible that the impact site for each experiment could vary slightly so as to not

have a perfect central impact each test. This can account for some of the variance in

experimental data compared to the FEM, which has a perfect central impact due to

its ideal conditions. Ultimately, these findings are extremely useful as a first step in

validating the FEMs for the two-phase and homogenized-layers material models of the

specimen plates.

6.2.4 FEM vs. Experiment—Strain Histories. The next step in validating

the FEM models is to look more closely at the individual strain histories themselves.

Figures 6.16-6.23 show the FEM strain histories for the two-phase and homogenized-

layers (MT-N) models compared to their experimental counterparts for strain gages

2 and 3. Strain gages 2 and 3 were chosen for plotting purposes for brevity only; the

results from gages 1 and 2 are very close in magnitude (see the experimental plots

in Chapter V, Figures 5.17-5.24) and gages 2 and 3 lie on perpendicular axes and

provide good comparisons. Again, no plots or comparisons are made for tests 5 and

6.

In the last section, we showed that for the most part, the maximum experimental

strains were within bounds given by the FEM for the predicted strain distribution

over the area nominally covered by the entire strain gage. In reality, the measured

strains occur only over the area covered by the electrical wire grid on each gage,

which covers only about half of the actual gage (see Figure 6.13). It is therefore not

unreasonable to select a subset of the twelve nodes, namely a 2 node x 3 node subset of

the 4 node x 3 node array, to use as the nodes most closely associated with the strain

gage measurement of strain. The experimental strain history from an individual gage

was compared to the strain histories from the corresponding 12 nodes in the FEM

(such as plotted in the example from test 8 in Figure 6.15). The 2 x 3 nodal array

whose histories were most closely associated with the actual strain histories from the

experiment were chosen from the 12 node array. The strain histories from these six

147



nodes were averaged over time to produce a single strain history (we will term this

averaged strain history as the “comparable strain history”, meaning it is comparable

to the measured strain history over the experimental impact event). The resultant,

or comparable, strain histories from this averaging are shown in Figures 6.16-6.23 for

strain gages 2 and 3 for both the two-phase and MT-N finite element models. In

nearly all cases, the 2 x 3 node array corresponded to the nodes directly over the

nominal gage grid location (as visible in Figure 6.13). In a few cases, a 1 x 3 array of

nodes almost nearly followed the experimental history, and in those few cases a 1 x

3 array of nodes were averaged to obtain the strain history. The averaging of nodal

strain histories accounts for the fact that the gage grid measures the average strain

under the grid, not merely the strain at a single point. Further, the choice of using a

1 x 3 versus a 2 x 3 array of nodes for averaging accounts for small variability in the

gage placement, discussed at length earlier.

Inspecting Figures 6.16-6.23, it can be seen that there are many strong corre-

lations between the FEMs and the test data, and there are also areas of discrepancy

that need to be addressed. In the pure titanium plate tests 1 and 2, only the two-

phase FEM strain history is plotted, but note that the MT-N material model and

the two-phase model are identical with identical material properties for a monolithic

mixture where one constituent has a volume fraction of zero. The FEMs in general

can predict the maximum values of the strains for both gages at both locations very

effectively. In most cases, both the two-phase model and the homogenized-layer mod-

els are within a reasonable error of the test results. In some cases, the two-phase and

homogenized-layer models are nearly identical in response, and in other cases maxi-

mum strain predicted is slightly greater or less than the counterpart. The two-phase

model is generated by randomly distributing cells of Ti and TiB, so it is not unex-

pected that this can and will occur. In fact, by the nature of the computer script used

to generate the random distribution of Ti and TiB elements, it is entirely possible

that one combination of the constituents would involve concentrating each material
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Figure 6.16: Test 1 (monolithic) experimental strain histories
& FEM comparison using two-phase plate model: a) strain gage
2, b) strain gage 3.

Figure 6.17: Test 2 (monolithic) experimental strain histories
& FEM comparison using two-phase plate models: a) strain gage
2, b) strain gage 3.
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Figure 6.18: Test 3 (monolithic) experimental strain histories
& FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.

Figure 6.19: Test 4 (monolithic) experimental strain histories
& FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.
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Figure 6.20: Test 7 (FGM) experimental strain histories &
FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.

Figure 6.21: Test 8 (FGM) experimental strain histories &
FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.
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Figure 6.22: Test 9 (FGM) experimental strain histories &
FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.

Figure 6.23: Test 10 (FGM) experimental strain histories
& FEM comparison using two-phase and Mori-Tanaka Needles
plate models: a) strain gage 2, b) strain gage 3.
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in large masses opposite one another. The meshes were, however, inspected prior to

solution to eliminate this possibility.

The FEMs predict loading slopes (that is, strain-rates) comparable to the ex-

perimental data for the gages up to the point of maximum strain. The time predicted

for maximum deflection in the plate, and thus maximum strain in the histories, is

correlated well on some tests and not as well on others. The error, however, seems to

be reasonably well-within limits of what can be expected between an experiment and

a simulation under ideal conditions. Some of the test data show highly distinct and

sharp oscillations very early in the response that disappear as the deflections become

larger through the course of the impact event. These oscillations are not reflected in

the FEM, and are undoubtedly related to noise in the data or electrical shorting of

the strain gages (fluttering of the single-stranded jumper wires during impact loading

can account for this). It is immediately evident (especially for the plots of strain gage

2), that the slopes of the histories during the unloading portions of the curves do not

correlate well. In fact, it appears that the rate the plate returns from maximum strain

to “zero strain is significantly less than that of the FEM. It is not likely that this be-

havior is associated with the monolithic or FGM composites themselves–indicating an

invalid material model or FEM. One possibility is that it is an effect of the response

of the adhesive used for the strain gages unloading in a different manner than when it

loads in tension to maximum strain. This would additionally explain why gages from

the same specimen indicate larger or smaller windows for the total time over which

the impact event occurs. A thick adhesive bond between the strain gage and plate

could substantially magnify these effects.

The FEM clearly shows several vibration modes being excited upon impact from

the tup. Some of these modes are not clearly discernable in the test results. On the

other hand, it appears that there are some lower frequency modes being excited in

the test data that are not reflected in the FEM, especially near the peaks of the

response (especially gage 2). This could be attributed to many possibilities, but most

likely a better material model or fixture model in the FEM would remedy portions of
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the histories. Addressing the former, Hill and Lin [55] reported material properties

while testing Ti-TiB FGM specimens that were significantly lower than the properties

predicted by Mori-Tanaka estimates or other similar models (see Table 4.5). This is

partially due to the difficulty in controlling the exact volume fractions of Ti to TiB

given that a chemical reaction is required to produce the TiB in-situ, but may also

be related to the sintering process itself. Additionally, the strain gage adhesive may

inherently damp out some of the oscillations that occur in the plate and are thus

not registered in the strain histories from the tests. The histories from the finite

element models are obtained from strain recorded directly from nodes in the vicinity

of the strain gage grids on the surface of the plate. Note again that damping was not

included in the FEM simulations presented here.

The oscillations in the strain histories in both the experiments and the finite

element models are potentially associated with wave propagation effects occurring in

the plate as it is loaded by the tup during impact. In an infinite medium, dilatational

waves (associated with volumetric change without change in shape) propagate at

speed c while distortional or shear waves (associated with a change in shape without

change in volume) propagate at speed cs [50]:

c =

√
E (1− ν)

ρ (1 + ν) (1− 2ν)
(6.1)

cs =

√
G

ρ
(6.2)

The dilatational and distortional wave speeds for titanium are 6127.1 and 3016.8 m/s,

respectively, and the dilatational and distortional wave speeds for titanium boride are

9150.4 and 5290.3 m/s, respectively, given the material properties for each in Tables

4.1 and 4.2. Given this information, the initial dilatational wavefront induced from the

impact load from the tup will travel 1.27 cm through the plate thickness unimpeded

in approximately two microseconds in the pure titanium plate. Surface waves, a third

type of wave different than dilatational or distortional waves, travel along the surface
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of a body and propagate at only a small fraction less than distortional waves and

their wave speed is often approximated by that of distortional waves [50]. This is an

important fact given that the strain gages and FEM data were taken directly from

the surface of the plates. On the same titanium plate, a surface wavefront generated

by impact from the tup at the center of the plate would travel 3.81 cm to the nearest

boundary before reflecting at the boundary (the plates are 7.62 cm x 7.62 cm); the

reflected wavefront would travel an additional 3.81 cm before returning to the center

of the plate. If the surface wave travels at the same speed as a distortional wave,

this journey would require approximately 25 microseconds. The period of the small

oscillations in the FEM strain histories appear to be on the order of approximately 50

microseconds, or twice that of the period required for a surface wave to propagate to

the boundary of a specimen plate and return. In the experimental strain histories, the

few oscillations observed occur over an even longer period. Considering the fact that

wave speeds for TiB-rich regions will be much faster than this, the estimates for wave

propagation effects provided here tend to be a more conservative comparison. Thus,

the high-frequency oscillations prevalent in the FEM and observed to a smaller degree

in the experiments are more likely associated with excitation of specific structural

modes than actual measured wave propagation effects.

The contact interactions applied throughout the finite element model did not

incorporate the effects of friction; that is, all surfaces in contact with each other

exhibit frictionless tangential behavior. Friction between the specimen plate and the

fixture can potentially affect the measured strain profile in the experiments. The

effects of friction can be seen in Figure 6.24. Here, the strain histories for two gage

locations in the Mori-Tanaka Needles FEM for impact test 9 (FGM impact test)

are plotted using sliding friction coefficients ranging from 0.00-1.00 for the locations

of strain gages 2 and 3 (the responses of gages 1 and 2 are virtually the same).

Recall that, in general, static and sliding friction forces are proportional to normal

loads applied on a body against a surface [10]. The proportionality constant is the

coefficient of friction which is dependent on the materials in contact with each other
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and generally ranges from 0.00-1.00 for various materials. Also note that typically

the coefficients of static friction and the coefficients of sliding friction are different

for most materials; usually the coefficient of sliding friction is less than that of static

friction [10]. Three effects of increasing coefficient of friction can be noticed from

Figure 6.24. First, incorporating a friction coefficient damps out the high-frequency

oscillations prevalent in the frictionless interaction model. Secondly, the maximum

magnitude of strain decreases as the coefficient of friction increases. Lastly, especially

in the response of strain gage 3, the histories tend to be less symmetric, meaning

that the plate remains at or near the maximum magnitude of strain before dropping

off very sharply as the tup unloads the plate. This is likely a leveraging effect near

the boundary that is causing a stick-slip behavior that is not as pronounced for a

frictionless model. It would seem that the stick-slip behavior with friction effects

would tend to cause the length of the strain histories (where strains are significantly

greater than zero) to increase, but this does not occur. The strains tend to return to

zero for this test around 900 microseconds regardless of the friction coefficient. The

frictionless FEMs tend to follow the experimental strain histories more closely and

thus the frictionless models will be used throughout this work.

As another comparison to the maximum strains in the experiment, the maxi-

mum comparable strains in the FEM histories (as plotted) were determined and are

tabulated based on test and gage number in Tables 6.8-6.10. With the exception of

test 1 and gage 1 (already identified as one that is producing suspicious results), the

comparable FEM maximum strains are within roughly 15% error of the experimental

maximum strains. This is a key finding that gives further credence to the validity of

both the two-phase material model and the homogenized-layers material model.
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Figure 6.24: Test 9 (FGM) finite element strain histories using
the Mori-Tanaka Needles plate model at the locations of: a)
strain gage 2, b) strain gage 3. The histories are plotted for
coefficients of sliding friction ranging from 0.00-1.00.

Table 6.8: Maximum strain comparison between ex-
periment and FEM results, strain gage 1.

Max Max Comparable Strains
Strain, Two-Phase MT-N Max %

Test Exper. FEM FEM Diff.

1 0.001184 0.001943 0.001943 64.1
2 0.002602 0.002845 0.002845 9.33
3 0.001712 0.001843 0.001684 7.70
4 0.001764 0.001998 0.001833 13.2
5 Failed
6 Failed
7 0.001460 0.001647 0.001621 12.8
8 0.001783 0.001763 0.001737 -2.56
9 0.001889 0.001894 0.001885 0.25
10 Failed 0.002071 0.002057
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Table 6.9: Maximum strain comparison between ex-
periment and FEM results, strain gage 2.

Max Max Comparable Strains
Strain, Two-Phase MT-N Max %

Test Exper. FEM FEM Diff.

1 0.001173 0.001131 0.001131 -3.54
2 0.001161 0.001239 0.001239 6.69
3 0.001603 0.001461 0.001679 -8.86
4 0.001469 0.001581 0.001401 7.60
5 Failed
6 Failed
7 0.001391 0.001227 0.001281 -11.8
8 0.001468 0.001307 0.001358 -11.0
9 0.001720 0.001867 0.001890 9.86
10 Failed 0.002045 0.002061

Table 6.10: Maximum strain comparison between
experiment and FEM results, strain gage 3.

Max Max Comparable Strains
Strain, Two-Phase MT-N Max %

Test Exper. FEM FEM Diff.

1 0.0005157 0.0006026 0.0006026 16.9
2 0.0009269 0.0009241 0.0009241 -0.31
3 0.0008058 0.0009139 0.0007308 13.4
4 0.0007834 0.0009579 0.0007774 22.3
5 Failed
6 Failed
7 0.0006638 0.0006103 0.0005626 -15.2
8 0.0007573 0.0006394 0.0008032 -15.6
9 0.0007016 0.0006914 0.0006498 -7.39
10 Failed 0.0009787 0.0009522
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6.3 Closing Remarks

The key finding of this chapter is that the two-phase and homogenized-layers (via

MT-N material model) FEMs produce strain histories very close to the strain histories

from the experiments. This is an invaluable contribution the field of functionally

graded material research; few have generated results comparable to any experimental

data and no literature is currently available correlating impact tests to analytical or

finite element analysis. The experiments traced strain histories at three locations

on each plate along perpendicular radial axes on the circular plate configuration.

The strong correlations given the idealized FEM and an experiment subject to some

variability suggests that the FEMs as designed are indeed adequate for studying the

behavior of Ti-TiB monolithic and functionally graded plates. Since the FEMs for

the FGM plates matched very well to the experiment, these FEMs will be assumed

to be valid, and the two-phase and homogenized-layers models will be assumed to be

sufficient for studying the global behavior of Ti-TiB FGMs under low-velocity and low-

to medium-energy impact loading conditions.

The construction and validation of the finite element models as discussed in

this chapter meet the second objective of this work (listed in Chapter I): construct a

finite element simulation of the impact experiment that is sufficiently sophisticated to

capture the dynamic effects of an impact load that is at the same time easily replicated

by scientists and engineers in practice. In the next chapter, an analytical treatment

of the FGM plate impact problem will be presented that can be used to study the

impacts conducted in the Dynatup experiments. This analytical treatment will be

used extensively in a parameter estimation technique (presented in Chapter VIII)

designed to enhance the material property predictions in the FGMs in order to further

refine the finite element models discussed in this and the previous chapter.
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VII. Analytical Treatment of the FGM Plate Impacts

This chapter will explore an analytical treatment of the FGM impact experiments.

Thus far, a series of impact experiments were conducted to collect strain his-

tories from monolithic and graded plates over the duration of the impact event. The

strain histories were compared to the analagous histories from a finite element model

of the experiment with different material models considered. The experiments and the

finite element models showed a strong degree of correlation, although the simulations

could potentially be improved with more accurate material properties for Ti-TiB mix-

tures. The material properties of the Ti-TiB mixtures were devised from published

values for Ti and TiB and using common analytical models to average the composite

properties based on volume fractions of one constituent to another constituent. In

Chapter VIII, a parameter estimation technique will be devised that will allow more

accurate material properties for Ti-TiB mixtures to be determined. These properties

will attempt to minimize the error between the finite element model and analytical

predictions of the plate based on experimental results. The result is a finite element

model that is optimized to emulate the actual impact experiments and will allow the

physics of the impacts to the FGM plates to be wholly captured. Before the param-

eter estimation technique is presented, it is necessary to discuss the analytical model

used to study the experiments since this analytical model will play a crucial role in

the formulation of the parameter estimation technique. The analytical technique pre-

sented expands on the concepts discussed in the plate theory sections of Chapter III

and applies the concepts to the actual FGM experiments. This analytical model will

be shown to be applicable to the plate impact tests and will be validated with results

from both the experimental strain histories and the finite element models.

7.1 Dynamic Considerations From Impact Loading

While the detailed physics of the impact events have not been discussed at

length, a few observations from the experiments and the associated finite element

models can be made to assist in choosing a candidate analytical formulation to at-
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tempt to describe the impact events. It is known and has been discussed that the tup

makes a single impact to the plate specimens. The tup is pulled by gravity toward

the plate specimen, the tup impacts the plate at the center of the top surface, and the

tup loads the plate through its momentum until the tup is stopped when sufficient

potential energy is stored in the plate (potential energy due to strain energy) to bleed

off the kinetic energy of the tup and crosshead. At the point of maximum potential

energy in the plate, the tup has exerted its maximum force on the plate specimen

at the center of the plate. This portion of the impact event constitutes the loading

portion of the impact event. After this point, the potential energy stored in the plate

(which can be thought of as a compressed spring acting on a mass) begins to act

on the tup/crosshead causing both the plate and tup/crosshead to rebound. As this

rebounding effect occurs, the force between the tup and the plate begins to diminish.

This is the unloading portion of the impact event. The loading and unloading of the

plate can be seen in the strain histories in Chapter V where each strain gage shows a

monotonic increase in strain up to a maximum value followed by a decrease in strain

to some value nearly zero.

In Table 5.5, it was shown that for all the tests the elapsed time from the moment

the tup came into contact with the plate specimen to the moment of maximum strain

in the specimens was approximately 500 microseconds for any of the monolithic or

functionally graded specimens. For the sake of argument in the remainder of this

section we will simply say that the loading occurred over 500 microseconds. The

unloading of the tup to the plate after maximum load is interesting as well, but at

this point it is unclear when the tup is no longer in contact with the plate. It is

impossible to tell if or how long the tup is exerting any type of force in the unloading

portion of the event from the strain histories; for now the 500 microseconds will

represent the entire period of loading by the tup. The unloading of the plate will

be discussed at length in Chapter IX, but for now it is not necessary to know this

dynamic.
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In both the experimental and FEM strain histories, only small oscillations at-

tributable to plate vibrations and waves were observed during the loading and unload-

ing portions of the strain histories (recall most of the large oscillations were attributed

to electrical disturbances). Further, after the unloading of the plate was completed,

almost no free vibrations of the plate were traced in any of the strain histories. These

observations would seem to indicate that the time-dependent motion of the plate is

more or less secondary to the overall solution. If this is the case, then assumptions

associated with quasi-static analyses can be used. There is precedent for modeling im-

pacts analytically in this manner if time-dependent motions of the plate or structure

are secondary to the overall solution, and it has been shown that such assumptions

match experimental data (see [48], [142], [51]). However, the key requirement to mod-

eling impact under quasi-static conditions is that the period of impact loading must be

much larger than the period of the first natural mode of the structure [48], [142]. This

requirement means that loading is sufficiently slow that it will not appreciably excite

the first natural mode of the system or any higher modes in the system. Further,

while it is recognized that there are indeed waves and vibrations propagating through

the structure over increments in time during the load history, the magnitude of these

vibrations is small compared to the global deformation of the structure. Finally, any

localized wave or dynamic motions have been provided an ample amount of time to

interact with the surrounding structure such that the waves have coalesced into global

structural motions. Whether or not the actual loading from the tup occurs over a

much larger period of time than the first mode of the plate in the plate fixture must

be demonstrated in the case of the impact experiments before proceeding.

The validated finite element models discussed in the previous chapter were used

in a modal analysis in ABAQUS to determine the first modal frequency of (a) a plate

specimen in the fixture and (b) a free plate specimen. In the first case, the seven-

layer Ti-TiB FGM with homogenized layers (Mori-Tanaka needles material model) in

the specimen plate fixture was modeled in ABAQUS exactly as described in Chapter

VI, including mesh, boundary conditions, constraints, and contact surfaces. The tup
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was not included in the FEM since only modal contributions from the plate and

fixture were necessary. In the second case, the same FGM plate was modeled in

ABAQUS without any boundary conditions or constraints at all. Essentially the two

modal analyses are the extreme cases under which the FGM plate is constrained;

one with constraints (in the plate fixture) and the second without constraints (free).

The periods of the first modes in both cases can be used for comparison against the

experimentally-determined 500 microsecond loading period.

Essentially, ABAQUS performs modal analyses on a finite element model by

solving the eigenvalue problem

(
[K− ω2[M]

) {
D̄

}
= {0} (7.1)

where [K] is the global stiffness matrix of the model, [M] is the mass matrix of the

model, ω are the modal frequencies and
{
D̄

}
are nodal displacements associated with

solutions to (7.1) (or mode shapes). Equation (7.1) is the classic eigenvalue problem

for determining undamped natural modes of free vibration. (Note that the modal

analysis was not performed in ABAQUS/Explicit but was solved in a different solution

module in ABAQUS. The details of this module will not be discussed here other

than to note what the module is doing to determine the mode shapes and associated

frequencies. Damping was not directly included in these modal analyses despite the fact

that ABAQUS includes a bulk viscosity term designed to damp out higher oscillations

during the solution in ABAQUS/Explicit; see Section 6.2.1 of Chapter VI. Application

of bulk viscosity is a feature applied to assist numerical solution and is only used in the

ABAQUS/Explicit module.) There are many ways to solve this problem numerically

to determine the natural frequencies (eigenvalues) and associated mode shapes (non-

trivial solutions, eigenvectors), but a treatment of this subject will not be provided.

In particular, the models of the free plate and the plate in the fixture were solved

with the Lanczos method and only the first 30 natural frequencies and mode shapes
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were determined since only the first non-rigid body motion natural mode is needed

(for further details see [3], [31], and [14]).

After solving these FEM models, it was determined that the first natural mode

of the system for the FGM plate in the fixture occurs at a frequency 9805 cycles/sec

and for the free FGM plate the first natural mode occurs at a frequency of 8270

cycles/sec. The period of each of these modes is the inverse of the frequency; thus

the periods of each mode are 102 microseconds and 121 microseconds, respectively.

The period of loading of the tup was 500 microseconds (as stated merely for the sake

of argument), or about four times larger than the largest of the periods associated

with the two natural frequencies. Thus the period of loading in the experiments was

somewhat larger than that of the period of the first modes for the FGM plates.

As a second check on this concept, the same two FEM models (plate in a

fixture and a free plate) were run using pure titanium specimen plates (100% Ti, 0%

TiB). The first natural mode determined by ABAQUS for the titanium plate in the

fixture occurs at a frequency 9103 cycles/sec. The first natural mode of the free Ti

plate was found to be 6167 cycles/sec. The periods of these modal frequencies are

110 microseconds and 162 microseconds. In other words, for the titanium specimen

plates, the period of loading in the impact experiments was over three times larger

than the largest of the periods associated with the two natural frequencies. Thus the

period of loading in the experiments was somewhat larger than that of the period of

the first modes for the titanium plates.

The pure titanium plates are the softest of the plate specimens (elastic modulus

110 GPa). The 15% Ti-85% TiB monolithic specimens would be the stiffest of the

plate specimens (recall the elastic modulus of TiB was estimated to be 370 GPa).

Since we have consistently not studied these specimens due to their failure during

experiments, it is fruitless to predict their natural modes. The FGM plates, thus,

were the specimens that were the stiffest of all the successful tests and the 85% Ti-

15% TiB monolithic specimens fell somewhere in between. By studying the periods
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of the first modes of the Ti and FGM plates under these conditions, a set of bounds

can be more or less set on what the extreme cases should be for the period of the

first modes in comparison to the actual period of loading in the experiments. It has

therefore been shown that the plates are indeed being loaded slower than the period

of the first natural modes of the plates. This requirement for quasi-static analysis has

been satisfied. Based on this observation and others discussed earlier, the impacts

will be studied analytically using a quasi-static analysis technique.

7.2 Analytical Model for Estimating Plate Impact Response

It was shown in the last section that the time window over which the impact

load from the Dynatup occurred was large compared to the period of the first nat-

ural frequencies of both the plates and the plate in the fixture. This finding is very

important because even though the plate impact is a dynamic event, the maximum

global deformation of the plate can be estimated assuming quasi-static force appli-

cation. Thus, the time-dependent terms in the governing equations disappear. This

greatly simplifies analysis. In this section, the concepts from plate theory given in

Chapter III will be extended to study the plate experiments and FEMs presented in

the previous chapters. This analytical model will additionally be used as part of a

scheme to estimate the material properties of individual layers of the FGM in order

to enhance the performance of the finite element models.

The theory presented in this section is summarized from works by J. N. Reddy

[103], [132], [98], [99], and [100]. Of primary interest is the transverse deformation of

a thick, composite (or functionally graded) circular plate with constrained boundary

subject to a concentrated load at the center of the plate. The central concentrated

load allows this plate to be studied assuming axisymmetry assumptions. Given the

composite plate is thick, it was additionally assumed that transverse shear strains

cannot be ignored. J.N. Reddy, along with some of his fellow colleagues through the

references above, developed a link between the results for transverse deformation of

an isotropic thin circular plate subject to a concentrated center load and the result for
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a composite shear-deformable plate of same geometry and loading using first-order

shear deformation theory (FST). This link is highly important to analyses such as

these because the governing equations for shear deformable plates can be extremely

complicated.

7.2.1 Formulation. Before proceeding, note that some aspects of the plate

theory in Chapter III will be reproduced to assist the reader in this development, while

some equations and concepts already thoroughly explained will not be included for

brevity. To this point, and through the remainder of the dissertation, the behavior of

the plates will be studied under the assumptions of linear-elastic deformation theory.

Given a circular plate in cylindrical coordinates (r, θ, z) of net thickness h and

subject to an axisymmetric transverse load p, the displacement field for the plate is

given as

ur(r, z) = u0(r)− z
dw0

dr

uz(r, z) = w0(r) (7.2)

according to Kirchhoff classical plate theory. u is the displacement along a given

coordinate direction (subscripts r and z), uθ = 0, u0 is the radial displacement and

w0 is the transverse displacement of the point (r, 0) along the mid-plane of the plate

(z = 0) as a function of the radial coordinate r. The plates used in this study are

considered thick plates where the transverse shear effects generally neglected in CPT

must be considered. First order shear-deformation plate theory will be used to account

for this effect. The displacement field in (7.2) is modified to take the following form:

ur(r, z) = u0(r) + zφ(r)

uz(r, z) = w0(r) (7.3)

φ is the rotation of a transverse normal in the plane θ = constant.

166



Both CPT and FST are governed by the relations

d

dr
(rNrr)−Nθθ = 0 (7.4)

− d

dr
(rQr) = rq (7.5)

rQr =
d

dr
(rMrr)−Mθθ (7.6)

Nrr and Nθθ are the radial and circumferential in-plane forces per unit length; Mrr

and Mθθ are the radial and circumferential moments per unit length:

(Nrr, Nθθ) =

∫ h
2

−h
2

(σrr, σθθ) dz (7.7)

(Mrr,Mθθ) =

∫ h
2

−h
2

(σrr, σθθ) zdz (7.8)

and Qr is the vertical shear force. The constitutive relations for the circular plates

are given by:

1. CPT for an isotropic circular plate:

NC
rr = A11

duC
0

dr
+ A12

uC
0

r
(7.9)

NC
θθ = A12

duC
0

dr
+ A11

uC
0

r
(7.10)

MC
rr = −D11

d2wC
0

dr2
−D12

1

r

dwC
0

dr
(7.11)

MC
θθ = −D12

d2wC
0

dr2
−D11

1

r

dwC
0

dr
(7.12)

QC
r =

1

r

[
d

dr

(
rMC

rr

)−MC
θθ

]
(7.13)
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2. FST for a non-symmetric composite or functionally graded circular plate:

NF
rr = A11

duF
0

dr
+ A12

uF
0

r
+ B11

dφ

dr
+ B12

φ

r
(7.14)

NF
θθ = A12

duF
0

dr
+ A11

uF
0

r
+ B12

dφ

dr
+ B11

φ

r
(7.15)

MF
rr = B11

duF
0

dr
+ B12

uF
0

r
+ D11

dφ

dr
+ D12

φ

r
(7.16)

MF
θθ = B12

duF
0

dr
+ B11

uF
0

r
+ D12

dφ

dr
+ D11

φ

r
(7.17)

QF
r = A55

(
φ +

dwF
0

dr

)
(7.18)

Superscripts C and F denote association with the classical and first-order theories,

respectively. Aij, Bij, and Dij are the plate stiffness matrices (defined by equations

(3.44)-(3.54) for the axisymmetric case as discussed in Chapter III). Note that for an

isotropic plate, the Bij matrix vanishes. (Compare (7.9)-(7.18) to the relations (3.65)

and (3.71)-(3.72) in Chapter III.)

The relationship between CPT and FST as defined by Reddy is presented.

Beginning with equation (7.4) and substituting the relations (7.14) and (7.15) results

in the following expression (after mathematical manipulation):

0 =
d

dr
(rNrr)−Nθθ

= A11

[
r

d

dr

(
1

r

d

dr

(
ruF

0

))]
+ B11

[
r

d

dr

(
1

r

d

dr
(rφ)

)]

This expression is then rewritten in the following form:

[
r

d

dr

(
1

r

d

dr

(
ruF

0

))]
= −B11

A11

[
r

d

dr

(
1

r

d

dr
(rφ)

)]
(7.19)

Successive integrations of expression (7.19) gives

uF
0 = −B11

A11

φ + k1
r

2
+

k2

r
(7.20)
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and differentiating (7.20) with respect to r produces

duF
0

dr
= −B11

A11

dφ

dr
+

k1

2
− k2

r2
(7.21)

Note that k1 and k2 are constants of integration that will be determined later. The

equations for uF
0 and duF

0 /dr can be substituted into (7.14)-(7.17) and thus simplify

the force and moment equations into functions of φ and r only.

MF
rr = Ω1

dφ

dr
+ Ω2

φ

r
+

1

2
Ω3k1 +

1

r2
Ω4k2 (7.22)

MF
θθ = Ω2

dφ

dr
+ Ω1

φ

r
+

1

2
Ω3k1 − 1

r2
Ω4k2 (7.23)

NF
rr = Ω5

φ

r
+

1

2
Ω6k1 +

1

r2
Ω7k2 (7.24)

NF
θθ = Ω5

φ

r
+

1

2
Ω6k1 − 1

r2
Ω7k2 (7.25)

The Ωi’s are constants based on material properties and can be found to be

Ω1 = D11 − B2
11

A11

(7.26)

Ω2 = D12 − B11B12

A11

(7.27)

Ω3 = B11 + B12 (7.28)

Ω4 = B12 −B11 (7.29)

Ω5 = B12 − A12B11

A11

(7.30)

Ω6 = A11 + A12 (7.31)

Ω7 = A12 − A11 (7.32)

Now, load equivalence requires

d

dr

(
rQF

r

)
=

d

dr

(
rQC

r

)
(7.33)
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and integration of this expression yields

rQF
r = rQC

r + c1 (7.34)

c1 is a constant of integration. Substituting equations (7.22) and (7.23) into (7.6)

gives

rQF
r =

d

dr

(
rMF

rr

)−MF
θθ = Ω1

[
r

d

dr

(
1

r

d

dr
(rφ)

)]
(7.35)

and substituting equations (7.11) and (7.12) into (7.6) gives

rQC
r =

d

dr

(
rMC

rr

)−MC
θθ = −D

[
r

d

dr

(
1

r

d

dr
(r

dwC
0

dr
)

)]
(7.36)

where it is recognized that D11 and D12 in (7.11) and (7.12) are equal to D and νD,

respectively. Substitution of (7.35) and (7.36) into equation (7.34) gives

Ω1

[
r

d

dr

(
1

r

d

dr
(rφ)

)]
= −D

[
r

d

dr

(
1

r

d

dr
(r

dwC
0

dr
)

)]
+ c1 (7.37)

successive integrations of this expression yields

Ω1
d

dr
(rφ) = −D

d

dr

(
r
dwC

0

dr

)
+ c1r ln r + c2r (7.38)

Ω1φ = −D
dwC

0

dr
+

1

4
c1r (2 ln r − 1) +

1

2
c2r +

1

r
c3 (7.39)

Defining the moment sum MC as

MC =
MC

rr + MC
θθ

1 + ν
(7.40)

and combining equations (7.18) and (7.34) with some manipulation yields

A55

(
φ +

dwF
0

dr

)
=

dMC

dr
+

1

r
c1 (7.41)
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The expression for φ in (7.39) is substituted into (7.41):

A55

[
−D

Ω1

dwC
0

dr
+

c1

4Ω1

r(2 ln r − 1) +
c2

2Ω1

r +
c3

Ω1r
+

dwF
0

dr

]
=

dMC

dr
+

1

r
c1 (7.42)

Integrating this expression produces the important result

wF
0 (r) =

D

Ω1

wC
0 +

c1

Ω1

[
r2

4
(1− ln r) +

Ω1

A55

ln r

]
− c2

4Ω1

r2− c3

Ω1

ln r− c4 +
MC

A55

(7.43)

This equation thus relates the solution to the FST transverse displacement, wF
0 , to

the solution for transverse displacement given by CPT for an isotropic plate, wC
0 .

The constants of integration, ci, are determined by the boundary conditions for the

specific plate configuration of interest. Finally, the in-plane forces and moments will

be determined based on the results to this point. Differentiation of (7.39) gives

Ω1
dφ

dr
= −D

d2wC
0

dr2
+

c1

2

[
1

2
(2 ln r − 1) + 1

]
+

c2

2
− c3

r2
(7.44)

The in-plane forces, NF
rr and NF

θθ, are given by substituting (7.39) into (7.24) and

(7.44) into (7.25), respectively:

NF
rr = Ω5

[
−D

Ω1

1

r

dwC
0

dr
+

c1

4Ω1

(2 ln r − 1) +
c2

2Ω1

+
1

r2

c3

Ω1

]

+Ω6
k1

2
+ Ω7

k2

r2
(7.45)

NF
θθ = Ω5

[
−D

Ω1

d2wC
0

dr2
+

c1

4Ω1

(2 ln r + 1) +
c2

2Ω1

− 1

r2

c3

Ω1

]

+Ω6
k1

2
− Ω7

k2

r2
(7.46)

The moments, MF
rr and MF

θθ, are determined by substituting equations (7.39) and

(7.44) into the moment relations (7.22) and (7.23), respectively, and employing alge-
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braic manipulation (steps not shown for brevity):

MF
rr = MC

rr +
D

r

dwC
0

dr

(
ν − Ω2

Ω1

)
+

c1

2

[
1

2

(
1− Ω2

Ω1

)
+

(
1 +

Ω2

Ω1

)
ln r

]

+
c2

2

(
1 +

Ω2

Ω1

)
− c3

r2

(
1− Ω2

Ω1

)
+ Ω3

k1

2
+ Ω4

k2

r2
(7.47)

MF
θθ = MC

θθ + D
d2wC

0

dr2

(
ν − Ω2

Ω1

)
+

c1

2

[
−1

2

(
1− Ω2

Ω1

)
+

(
1 +

Ω2

Ω1

)
ln r

]

+
c2

2

(
1 +

Ω2

Ω1

)
+

c3

r2

(
1− Ω2

Ω1

)
+ Ω3

k1

2
− Ω4

k2

r2
(7.48)

This concludes the development for determining the transverse displacement, forces,

and moments for a FST FGM circular plate under axisymmetric bending as related to

the solution for an isotropic CPT circular plate with the same geometry and boundary

conditions. These relations will now be applied to determine the transverse displace-

ments of FST FGM circular plates for (1) a clamped boundary and (2) a simply-

supported boundary. These common boundary conditions will be tested against the

experimental and FEM results to assess which is closest to the actual impact events.

7.2.2 Clamped Boundary Condition. The boundary conditions for a plate

clamped at the boundary (clamped at r = a) are:

1. r = 0

u = 0 , φ = 0 ,
dwC

0

dr
= 0 , Qr = 0 (7.49)

2. r = a

u = 0 , w = 0 , φ = 0 ,
dwC

0

dr
= 0 (7.50)

Applying the boundary conditions for u to equation (7.20) shows the constants

k1, k2 are both equal to zero. The boundary condition Qr = 0 at r = 0 applied to

equation (7.34) yields c1 = 0. Additionally, we know φ = 0 at both r = 0 and r = a.

These conditions are applied to the expression for φ in (7.39) where the constants c2

and c3 are determined to be zero. Finally, c4 is determined by applying the condition w

= 0 at r = a along with the known values of ci and other conditions listed to equation
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(7.43) to give c4 = MC(a)/A55. Noting the solution for a clamped, isotropic, CPT

plate with a concentrated central load P is [125], [100]:

wC
0 (r) =

P

16πD

(
2r2 ln

r

a
+ a2 − r2

)
(7.51)

The solution wF
0 (r) for the FST FGM clamped circular plate is then

wF
0 (r) =

D

Ω1

wC
0 (r) +

MC(r)−MC(a)

A55

(7.52)

Equations (7.34) and (7.45)-(7.48) reduce to the following expressions applicable to

the clamped circular plate:

QF
r (r) = QC

r (r) (7.53)

NF
rr(r) = −Ω5

D

Ω1

(
1

r

dwC
0

dr

)
(7.54)

NF
θθ(r) = −Ω5

D

Ω1

d2wC
0

dr2
(7.55)

MF
rr(r) = MC

rr(r) + D
1

r

dwC
0

dr

(
ν − Ω2

Ω1

)
(7.56)

MF
θθ(r) = MC

θθ(r) + D
d2wC

0

dr2

(
ν − Ω2

Ω1

)
(7.57)

Using the linear-elastic strain-displacement relations in (3.64) and applying the so-

lutions presented here to equations (7.20) and (7.39) to find ur in (7.3), the radial

strain in the plate can be shown to be

εrr(r, z) =
∂ur

∂r
=

P

4πΩ1

[
B11

A11

− z

] (
1 + ln

r

a

)
(7.58)

This radial strain will be compared to the strain gage results from the plate tests

shortly.

Given a FGM plate with two constituents, metal and ceramic, the choice of

which isotropic plate (metal or ceramic) to use as the model plate solution wC
0 in

(7.52) is arbitrary because the numerator of the coefficient D/Ω1 will cancel out the
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D in the denominator of the coefficient in (7.51), leaving only the Ω1 term in the

denominator of the FST solution. This term accounts for the composition of the

actual FGM plate. Also note that the solution wF
0 can also be used with monolithic

specimens since the [Aij], [Bij], and [Dij] matrices account for the plate composition

through the thickness where a single, multiple, or infinite number of layers of varying

composition can be accounted for.

A very important note on the vertical shear load Qr is in order before proceed-

ing. If the axisymmetric load applied to the plate is a distributed load, the condition

Qr = 0 is a condition applied at r = 0. This condition is important since through this

boundary condition the constant c1 in equation (7.34) is zero. Now, if the axisym-

metric load applied to the plate is a concentrated load at the center, Qr = -P/2πr is

required to hold for all r. This is somewhat problematic for two reasons. First, at the

center of the plate, r = 0, Qr is unbounded as are the deflections and stresses at the

center of the plate. Westergaard [133] proposed that the problem can be alleviated

by using an equivalent radius re in place of r in force, moment, and stress equations

at the center of the plate, meaning the concentrated load is assumed to be applied

over a very small area given by

re =
√

1.6 r2
c + h2 − 0.675 h , rc ≤ 0.5 h (7.59)

rc is a small radius that defines a small circular area over which the concentrated

load is assumed to be distributed. rc can be set equal to zero for a concentrated

load, if so desired, in which case the re is equal to 0.325h. For r less than or equal

to re, re is substituted for r as a constant in the equations for displacements, forces,

moments, and stresses. This has the effect of bounding the solutions for these near the

plate center, although it is an approximation to the exact solution. Westergaard [133]

originally proposed this approximation and demonstrated its utility through rigorous

theoretical analysis. Additionally, Westergaard demonstrated that the equation is

applicable to a plate of any size and geometry. The result is used extensively in
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practice (see [141], [125], and [100]). This equivalent radius will be used to produce

bounded results for force, moments, and stresses when r is less than re given rc = 0

and the plate thickness h in results documented later in the dissertation. The second

problem associated with Qr = -P/2πr is that the solution for wF
0 was determined

assuming that Qr = 0 at the center of the plate yielding the result that the constant

c1 = 0. Note that the most significant contribution to the result for wF
0 is the solution

wC
0 , which is solved in CPT assuming that Qr = -P/2πr applies across the plate for all

r. The other terms in wF
0 more or less add corrections to account for the assumptions

of FST. Now, since c1 is a constant, assuming c1 = 0 in the case of a concentrated

load will still satisfy the load equivalence relation (7.33) and will not appreciably

change the accuracy of the solution, especially in light of the justification and use of

the equivalent radius described in this paragraph (meaning the concentrated load is

assumed to be distributed over a small area).

7.2.3 Simply-Supported Boundary Condition. The boundary conditions for

a plate simply-supported (or hinged) at the boundary (simply-supported/hinged at r

= a) are:

1. r = 0

u = 0 , φ = 0 ,
dwC

0

dr
= 0 , Qr = 0 (7.60)

2. r = a

u = 0 , w = 0 , Mrr = 0 (7.61)

The boundary conditions for this case are applied in a very similar fashion to the

procedure discussed for the clamped condition, but since the boundary conditions are

different the results are also very different. As with the case of the clamped condition,

this becomes a mathematical exercise in which only the results will be presented. The

solution for a clamped, isotropic, CPT plate with a concentrated central load P and
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simply-supported boundary is [125], [100]:

wC
0 (r) =

P

16πD

[
2r2 ln

r

a
+

3 + ν

1 + ν

(
a2 − r2

)]
(7.62)

The constants from application of the boundary conditions are

k1 =
2B11

aA11

(
−D

Ω1

dwC
0 (a)

dr
+

c2

Ω1

a

2

)

k2 = 0

c1 = 0

c3 = 0

c2 = −2D

a

(
ν − Ω2

Ω1
− Ω9

ν + Ω2

Ω1
+ Ω9

)
dwC

0 (a)

dr

c4 =
MC(a)

A55

− c2

Ω1

a2

4

Ω9 =
Ω3

Ω1

B11

A11

The solution wF
0 (r) for the FST FGM simply-supported circular plate is then

wF
0 (r) =

D

Ω1

wC
0 (r) +

MC(r)−MC(a)

A55

+
1

4

c2

Ω1

(
a2 − r2

)
(7.63)

Equations (7.34) and (7.45)-(7.48) reduce to the following expressions applicable to

the simply-supported circular plate:

QF
r (r) = QC

r (r) (7.64)

NF
rr(r) = Ω5

D

Ω1

(
1

a

dwC
0 (a)

dr
− 1

r

dwC
0

dr

)
(7.65)

NF
θθ(r) = Ω5

D

Ω1

(
1

a

dwC
0 (a)

dr
− d2wC

0

dr2

)
(7.66)

MF
rr(r) = MC

rr(r) + D
1

r

dwC
0

dr

(
ν − Ω2

Ω1

)
+

1

2
c2

(
1 +

Ω2

Ω1

)
+

1

2
k1Ω3 (7.67)

MF
θθ(r) = MC

θθ(r) + D
d2wC

0

dr2

(
ν − Ω2

Ω1

)
+

1

2
c2

(
1 +

Ω2

Ω1

)
+

1

2
k1Ω3 (7.68)
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Using the linear-elastic strain-displacement relations in (3.64) and applying the so-

lutions presented here to equations (7.20) and (7.39) to find ur in (7.3), the radial

strain in the plate can be shown to be

εrr(r, z) =

[
z − B11

A11

]{
− P

16πΩ1

[
4 ln

r

a
+ 6− 2

(
3 + ν

1 + ν

)]
+

c2

2Ω1

}
+

k1

2
(7.69)

This radial strain will be compared to the strain gage results from the plate tests in

the next section. The use of the equivalent radius as well as the the considerations

with respect to Qr discussed for the clamped boundary condition are applicable to

the simply-supported plate as well.

7.3 Validation of Analytical Model

The necessary theory for an analytical study of the impact events has been

presented in the previous section. The formulas for strain and displacement will

play a very prominent role in the parameter estimation scheme discussed in the next

chapter. Two questions remain that must be answered before proceeding: (1) How

will the formulation compare to the actual tests? and (2) What type of boundary

condition is closest to the plate in the fixture? Both questions will be answered in

the following discussion.

Formulas for determining radial strain and transverse displacements were de-

veloped for circular plates with a concentrated load at the center of the plate under

the assumptions of axisymmetric bending for a clamped or simply-supported bound-

ary. These formulas will be compared to the results for the 100% titanium plate of

test 1 (see Table 5.3) in the experiments. The finite element solution for this test

discussed in Chapter VI will be used as will the experimental results in Table 5.5 for

comparison.

There are a few good reasons for using the titanium plate of test 1 as the

verification test. First, the FST model of the last section is valid for a monolithic or

graded plate, but the monolithic specimen provides the simplest solution because the
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material properties are much simpler for an isotropic plate than a graded plate with

varied composition through the thickness. Next, the material properties of titanium

are very well known and not nearly as ambiguous as those for a Ti-TiB mixture. That

is, while the 85% Ti-15% TiB specimens were also monolithic and (assumed) isotropic,

one of the material models such as the rule-of-mixtures or Mori-Tanaka estimates

would have to be applied and such is not the case with 100% Ti. Lastly, the Dynatup

is able to measure contact force during impact events as mentioned in Chapter V. A

few unused 100% Ti plates remained after testing in Chapter V was completed. The

load cell for measuring contact force had a calibration problem during the initial tests

that was later resolved. One unused 100% Ti plate was placed in the Dynatup and

tested under the conditions of test 1 without strain gages (test 1: 13.06 kg crosshead

mass, 0.508 m crosshead height, 3.040 m/s impact velocity, 60.35 J impact energy).

The actual impact velocity of this second test was 3.086 m/s, with impact energy

62.19 J. This was deemed sufficiently close to assume the contact force measurement

would be very close to that of test 1. The maximum contact force measured in the test

was 87,380 Newtons. This force is used as the load P in the equations for transverse

displacement (wF
0 ) and radial strain (εrr). A subsequent test under the conditions of

Test 2 with a pure titanium plate was also carried out, but this test was not fruitful

as the maximum contact force was beyond the maximum detectable load (that is, the

maximum load that the load cell is calibrated to accurately read—89,000 Newtons)

for the load cell, and thus an accurate force was not collected for this test.

Figures 7.2 and 7.3 compare the analytical radial transverse displacements of

the mid-surface of the plate (wF
0 ) to the finite element solution for a 100% Ti-0%

TiB monolithic plate under the conditions of Test 1. The finite element solutions

are nodal displacements taken along axes as shown in Figure 7.1. Recall the original

plate is a 7.62 cm x 7.62 cm – 1.27 cm thick square plate configured to a circular plate

with a radius of 3.49 cm. The displacements are plotted only to the radial boundary

(meaning the fixture’s circular opening) shown in Figure 7.1. The portions of the test

plate that are covered and built into the fixture (shown in gray) are of interest, but
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Figure 7.1: Specimen plate with gages, with key reference
positions annotated.

the behavior of the plates in those sections will be discussed more in Chapter IX.

By inspection, it can be seen from the displacement plots that the FEM solution is

very close to the analytical FST solution for a simply-supported plate. The analytical

displacement distribution for the clamped boundary condition (BC) does not match

well with the finite element result. The radial strain distributions along the bottom

surface of the plates along the axes in Figure 7.1 are plotted in Figures 7.4 and 7.5.

The radial strain distributions from the FEM correlate well with the distribution

predicted by analytical theory for the simply-supported case, but not well for the

clamped BC. Further, the radial strains measured by the strain gages correlate well

with the FEM and the simply-supported analytical solution. This indicates that the

plate fixture acts much closer to a simply-supported BC than a clamped BC as one

would believe knowing the fixture configuration.

A couple of notes on the displacement and strain distributions are in order.

First, the analytical prediction has a “plateau” effect at the inner portions of the

curve for the analytical theory. This is due to the use of the effective radius re used
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in the equations in place of r for radii ≤ 0.325 h, or 0.325 times the thickness of the

plate (0.00413 m). Recall that without the use of the effective radius, the solutions

for displacement and strain become unbounded due to the logarithmic terms. Clearly

the solutions are not unbounded as is shown from the finite element results and

from the fact that the plates did not instantly fail in the tests. This is merely an

approximation to the actual behavior at that part of the plate. This effect introduces

more error between the theory and the FEM in the strain distributions than in the

displacement solutions for the simply-supported BC. Next, one can note two “kinks”

in the displacement solutions (meaning a sharp change in the displacement solution

away from the general trend of the curve) very near the fixture boundary for the FEM.

This is undoubtedly attributable to a contact effect in the FEM where the sharp edge

marking the boundary of the opening in the fixture contacts the plate specimen.

This effect is propagated through the FEM solution along the entire boundary as

is apparently visible along the gage axis and 45◦ axis of the plate. The next point

involves the strain gage data plotted from test 1. Recall that gage 1, closest to the

center, had a significant discrepancy between the measured strain and the FEM strain.

This discrepancy is visible in Figures 7.4 and 7.5. However, the other gages follow the

FEM result well and the analytical prediction for the radial strain distribution for the

simply-supported BC also passes through the strain gage measurements. These are

important observations in that now there is strong evidence that the fixture is indeed

acting very much like a simple-support to the plate specimens. Finally, the gage axes

provide the best comparison for radial strain distribution to the strain gage results and

the analytical predictions. The 45◦ axis of the plate has some radial strain discrepancy

associated with it. This undoubtedly implies that the material built into the fixture

plays a role in the difference between the actual tests and the ideal conditions of a

simple-support under plate theory. Even in light of this discrepancy, the displacement

results match reasonably well along the 45◦ axis as well as along the gage axis and

the strain distributions are not far removed from one another along either axis. More

will be said regarding these concepts in later chapters.
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Figure 7.2: Transverse displacement of the plate in test 1 at
maximum center displacement given the FEM and analytical
predictions with clamped BC.

Figure 7.3: Transverse displacement of the plate in test 1 at
maximum center displacement given the FEM and analytical
predictions with simply-supported BC.
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Figure 7.4: Radial strain distributions on the bottom surface
of the plate (experiment, FEM, and analytical) in test 1 at max-
imum center displacement with clamped BC.

Figure 7.5: Radial strain distributions on the bottom surface
of the plate (experiment, FEM, and analytical) in test 1 at max-
imum center displacement with simply-supported BC.
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7.4 Closing

In closing, an analytical model to estimate the maximum deformation of the

plate specimens in the impact experiments has been developed under quasi-static

loading assumptions and first-order shear deformable plate theory. The analytical

treatment of the plate was tested against experimental data and finite element so-

lutions from a previous experiment at the instant of maximum deformation. It was

found that the plate impact experiments correlate well to a circular plate in a simple-

support (hinge) under a central concentrated load given axisymmetric bending as-

sumptions. This analytical model will play a crucial role in the parameter estimation

algorithm discussed in the next chapter and will provide a direct link between theory,

the FEMs, and the experiments that will allow the material models for the FGM to be

more effectively determined. These improved material models will enhance the FEMs

such that impacts against FGM specimens can be completely characterized.
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VIII. Estimation of Ti-TiB Material Parameters

Chapter VII outlined an analytical technique for estimating the response of a

FGM plate under the conditions of the FGM plate experiments. It was shown

that an axisymmetric plate with a simply-supported boundary condition most closely

modeled the impact tests through experimental and finite element validation. The

analytical technique will now be applied to a parameter estimation scheme that char-

acterizes the material properties for the Ti-TiB mixtures though the graded layers of

the FGM. The formulation and implementation of the parameter estimation technique

will simultaneously satisfy the next two objectives in this research: (1) correlate the

results from the experiments and finite element models to available analytical theory

and (2) refine the finite element material models using parameter estimation tech-

niques to more effectively and accurately simulate the FGM plate impact experiments.

To this point, the material properties in each layer in the FGM were estimated

using mathematical models that related known properties for the constituents to their

volume fractions locally in the FGM. In this chapter, a parameter estimation technique

will be demonstrated where material properties of a single constituent are varied to

minimize the error between the analytical model of the impact tests (from the previous

chapter) and another tailored mathematical model fit to data points from a series

of simulations with the two-phase finite element model of the tests. This parameter

estimation scheme will allow the material properties to be compared against published

values of the constituents and will further provide material data that will enhance

the current finite element models being used. The parameter estimation scheme,

once implemented, will be the final step in generating a finite element simulation

that can be used to study the physics of low-velocity, low- to medium-energy impact

events with functionally graded materials. This parameter estimation scheme is a

valuable contribution to the study of two-phase FGMs because it allows basic material

properties of two-phase mixtures to be estimated if either: (a) the material properties

of one constituent are not well known but the properties of the composite mixture are

believed to follow available material models, or (b) the properties of the constituents
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are well known but material models relating the volume fractions and properties of the

constituents to the average properties of the composite are not well known.

This chapter begins with an overview of the parameter estimation sequence.

The problem is posed to minimize the error between the analytical model of the

impact experiments and a mathematical model of the two-phase FEM by varying

the material properties of the TiB constituent while holding the properties of the Ti

constituent constant. Next, the mathematical model constructed to predict the max-

imum transverse deflection in the FGM plates from impact loading in the two-phase

FEM is presented. Next, the techniques necessary to acquire the numerical solution

of the minimization problem designed to estimate the FGM material properties is

provided along with the steps required to implement the techniques in practice. The

chapter concludes with results from the parameter estimation sequence compared to

data collected from the FGM impact experiments.

8.1 Problem Formulation & Overview

In this section, the parameter estimation problem will be posed as an opti-

mization problem where the error between the finite element model of the impact

experiments and the analytical predictions will be minimized by varying the material

properties of the Ti-TiB mixtures. The discussion will begin by defining how the

material properties will be varied. First, the material properties and behavior of the

titanium constituent are well documented in the literature and it is assumed that the

material properties for this constituent are accurate. The TiB constituent, on the

other hand, is not well-understood and the limited available literature shows a wide

range of estimated properties (see Chapter IV). However, it can be assumed that the

properties of TiB, notably elastic modulus, Poisson’s ratio, and density, are more or

less the properties (Pi) of Ti multiplied by some coefficient Ci. In other words:

FGM Constituent 1 (Ti): P1, P2, ..., Pn

FGM Constituent 2 (TiB): (C1*P1), (C2*P2), ..., (Cn*Pn)
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Since we are only interested in three properties, n = 3 for the Ti-TiB system.

C1 will be associated with the elastic modulus of TiB; C2 will be associated with the

Poisson’s ratio of TiB; and C3 will be associated with the density of TiB. The choice of

these three properties is simply based on the fact that these properties were the only

ones required for the FGM in both the analytical model and the finite element model.

As discussed earlier, the FGM plates behaved elastically in the room temperature

environment and therefore restricting the study to these three parameters is valid.

The finite element models in both the two-phase and homogenized-layers cases

were shown to model the impact experiments reasonably well in Chapter VI. The

two-phase model had an advantage over the homogenized-layers model in that the

individual constituents were randomly dispersed based on local volume fraction ratio

of the constituents. As discussed earlier, there are features of this model that can

capture some effects that the homogenized-layers model cannot capture due to the

random distribution of the constituents. One feature of particular interest is the

local distribution of constituents is highly statistical in nature in those FEMs. The

homogenized-layers FEM on the other hand, is the most commonly used in analysis

due to the convenience in assuming averaged properties for local volume fraction

ratios of the constituents. The analytical model in the previous chapter assumes the

materials are averaged using a mathematical relation as well. The ideal scenario is

to bridge the gap between the two-phase and homogenized-layers models so that the

features of both can be used to estimate the average material properties of individual

layers and simultaneously estimating the properties of the individual constituents.

The parameter estimation problem will be posed as follows:

min f =
(
wFST

0 − wFEM
0

)2

Subject to Cmin
1 ≤ C1 ≤ Cmax

1

Cmin
2 ≤ C2 ≤ Cmax

2

Cmin
3 ≤ C3 ≤ Cmax

3 (8.1)
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wFST
0 is the transverse displacement of the center of the FGM plate using the FST

plate formulation in the previous chapter (called wF
0 earlier but the full acronym

“FST” is used here to clearly separate the nomenclature from the transverse displace-

ment of the FEM). wFEM
0 is the transverse displacement of the same FGM plate taken

from the two-phase finite element model. Ci are the constant coefficients that are used

to determine the material properties of constituent 2 (TiB). Essentially the problem

can be stated in words as follows: minimize the difference, or error, in center trans-

verse displacements between the analytical model and the two-phase FEM subject to

limits on the values that the material properties of TiB can attain. The transverse

displacements from the analytical model and the FEM can be used to estimate the

material properties of the constituents by noting that the displacements are both func-

tions of the elastic moduli, Poisson’s ratios, and densities of the constituent materials.

The material properties of Ti are assumed fixed, and the properties of TiB are varied

by changing the values of the coefficients C1, C2, and C3. The values for Ci are altered

iteratively until the two-phase FEM response matches the response from the analyti-

cal model using (a) the same values for Ci, (b) the same volume fraction distribution

of constituents, and (c) a chosen material model such as the rule-of-mixtures or the

Mori-Tanaka estimates.

A few notes on the estimation problem. A series of tests with the two-phase

FEM will be conducted to determine a mathematical model for wFEM
0 based on the

material properties of Ti and TiB as inputs. Another input to the mathematical

model will be impact velocity, a variable that is associated with the contact force in

the FEM that will have an effect on the net displacement of the FGM plate. The

method for accomplishing this will be presented in the following section. Developing

such a mathematical model allows the parameter estimation problem to be solved

off-line apart from ABAQUS, increasing the efficiency of the numerical solution. The

numerical solution to equation (8.1) will be discussed later in this chapter.

With regard to wFST
0 , this displacement was solved analytically in Chapter VII.

The displacements from classical theory & first-order shear deformable theory and
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the radial strain in the plate for a circular simply-supported plate were shown to be

(reprinted here for convenience):

wC
0 (r) =

P

16πD

[
2r2 ln

r

a
+

3 + ν

1 + ν

(
a2 − r2

)]
(8.2)

wFST
0 (r) =

D

Ω1

wC
0 (r) +

MC(r)−MC(a)

A55

+
1

4

c2

Ω1

(
a2 − r2

)
(8.3)

εrr(r, z) =

[
z − B11

A11

] {
− P

16πΩ1

[
4 ln

r

a
+ 6− 2

(
3 + ν

1 + ν

)]
+

c2

2Ω1

}
+

k1

2
(8.4)

As can be seen from equations (8.2) and (8.3), solving for the transverse dis-

placement of a simply-supported circular plate requires knowledge of the magnitude

of the concentrated force applied at the center of the plate P . In the plate tests,

this force was not known due to the calibration problem in the Dynatup. However,

the magnitude of force P is also a term in the radial strain equation (7.69). The

maximum strains were measured at the nominal gage positions during the impact

tests. Using this equation, the force applied at the center of the plate from the tup

can be estimated by solving equation (7.69) for P given the maximum strain in the

gage and the assumed material properties of the plate. The values for all three gages

in the plate should yield roughly the same value in each test through the equation,

and the average of the three P estimates provides a good estimate of the actual max-

imum force exerted on the plate by the tup. Later it will be shown that solving for

the force in the plate through the experimental strains works very well. Also note

that the solution for P is directly affected by the material properties of Ti and TiB;

therefore as the properties of TiB are varied through C1, C2, and C3, the predicted

magnitude of the force P will also vary. This is an extremely useful fact since it ties

the analytical solution directly to the experiments as the error between the FEM and

analytical model is minimized. More will be said about this later as the solution and

implementation of the parameter estimation is presented.
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Finally, wFST
0 requires a choice of mathematical material model (rule-of-mixtures,

self-consistent model, Mori-Tanaka estimates, etc.) to average the contributions of Ti

and TiB based on the local volume fraction ratio of the constituents. (The assumed

distribution of Ti-TiB will not vary from the values in Table 4.4 during the parameter

estimation sequence.) The choice of material model can affect the solution during the

minimization process, however, it will be shown later in this chapter that the choice

of material model very nearly predicts the same material properties in each layer of

the FGM; further, for some of the models, the predictions for TiB material properties

are very close to the same for each material model.

8.2 Estimating Transverse Deflection from the Two-Phase FEM

The two-phase finite element material model was shown to agree relatively well

with both the experimental results as well as the homogenized material model re-

sults in Chapter VI. The goal is to estimate the maximum transverse deflection of

functionally graded plates due to the Dynatup impact events as a function of the

material properties of titanium and titanium boride as well as the velocity of the

tup. The two-phase FEM provides a degree of uncertainty in the response due to the

random distribution of constituents from one FEM test to the next; this is not the

case with the homogenized-layers model since the material properties in each layer

are the same. To account for the random distribution of constituents, the two-phase

FEM provides a vehicle through which the homogenized-layers material models can

be assessed further.

A series of simulations with the two-phase FEM (seven-layer Ti-TiB function-

ally graded model only) were run in order to estimate the maximum deflection of the

plate by fitting a second-order polynomial to the FEM results using the method of

least squares (such techniques are well-documented in the literature; Myers & Mont-

gomery [82] and Lawson & Erjavec [69] were referenced in the documentation of this
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section). The second-order polynomial has the form

ŷ = b0 +
k∑

i=1

bixi +
k∑

i=1

k∑
j=i

bijxixj (8.5)

where ŷ is the dependent variable being estimated, xi (i = 1, ..., k) are the independent

variables or “factors” of the second-order polynomial, and b0, bii, and bij are the

coefficients of the independent variables.

The process to construct the second-order mathematical model in the context

of the FGM plate impact problem can be described as follows. Four factors (k = 4)

were chosen as independent variables whose values directly affect the response of the

plate deflection on impact: (1) the elastic moduli of the constituents, (2) the Poisson’s

ratio of the constituents, (3) the densities of the constituents, and (4) the velocity of

the tup at impact. The variables (1)–(3) are all material property parameters. Since

the material properties of Ti were assumed to be constant, the material properties

of TiB will be variable in the mathematical model. Thus, factors x1, x2, and x3 will

represent the material property coefficients C1, C2, and C3 that are associated with

the elastic modulus, Poisson’s ratio, and density of TiB, respectively. The fourth

factor, x4, will represent the velocity of the tup vtup. The dependent variable ŷ, the

maximum center deflection of the FGM plate on impact wFEM
0 , is thus assumed to be a

function of all four variables in the form of equation (8.5). Each of the xi independent

variables is assigned an upper and lower bound on values that each variable might

attain in practice. A series of tests is then run by choosing distinct values for each

xi variable over their respective regions of interest and then measuring the response

of the system associated with those values, ŷ. Each set of settings xi for individual

tests are then correlated to their measured responses ŷ by fitting equation (8.5) to

the test results using the method of least squares. Generally the number of tests

that can be feasibly conducted to determine ŷ over a range of xi values is limited.

Therefore, when attempting to fit test data to a quadratic mathematical model, three

equally spaced values for each xi are chosen over the region of interest for each variable
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Table 8.1: Factors used in Box-Behnken designed
experiment.

Variable Values
Coded Actual Equivalent To Coded Actual

x1 C1 Elastic Modulus Coeff. +1 4.20
0 3.40
-1 2.60

x2 C2 Poisson’s Ratio Coeff. +1 0.50
0 0.40
-1 0.30

x3 C3 Density Coeff. +1 1.10
0 1.00
-1 0.90

x4 vtup Tup Velocity +1 4.128 m/s
0 3.493 m/s
-1 2.858 m/s

and a series of tests based on combinations of the three values for each variable is

conducted. The three equally spaced values for each variable will be termed “levels”

from this point forward. The choice of three levels for each xi is based on the need

to find intermediate curvature points in the test data when fitting test data to the

second-order mathematical model (8.5).

Refer to Table 8.1. The four independent variables chosen to measure the max-

imum center deflection of the two-phase FEM on impact are shown along with their

respective test levels. The variables and their values are shown as either actual values

or coded values. Unitless coded variables and values (shown as -1 ≤ xi ≤ +1) are

often applied when fitting an empirical model to the form (8.5) because actual values

can at times be cumbersome to work with if the independent variables are not of the

same order of magnitude or if the variables have drastically different units (more will

be said of this point later). The uncoded (or actual) independent variables and values

can in some instances have values and units that are similar in nature in which case

the advantages with applying unitless coded variables no longer exist. Using actual

values of variables (Ci and vtup with their associated values) can be advantageous
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in that the mathematical model (8.5) is easier to relate to physical numbers. It is

valid to use either actual variables or coded variables in practice, and it is possible

to translate between actual and coded values provided some assumptions are applied.

Whether coded or actual variables are used, generally ŷ is measured as an actual

value and is not coded even when coded variables are used. More will be said of this

in subsequent paragraphs and examples associated with the two-phase FEM will be

provided.

It was stated earlier that fitting a second-order polynomial requires each xi factor

(coded or uncoded) to be tested at three different levels to define the curvature in the

response ŷ. A standard series of experiments that would be used to determine the

complete response surface ŷ for k factors at three levels for each factor would require

3k experiments. A study involving k = 3 factors would thus require 27 experiments

and k = 4 would require 81 experiments for a complete response surface. It is easy

to see that the more variables that are associated with the response ŷ, the more tests

are required to wholly capture the complete second-order response surface of ŷ.

An efficient method for generating the coefficients in equation (8.5) has been

developed by Box and Behnken [22]. In this study, the second-order polynomial model

consists of four independent variables, three of which are associated with the material

properties of Ti and TiB and the fourth is the velocity of the tup. These variables

were shown in Table 8.1 within the context of equation (8.5). The series of tests

necessary to determine the b-coefficients (15 in all for the four factors xi) in equation

(8.5) are shown in Table 8.2. According to the Box-Behnken designed experiments,

27 tests must be conducted where ŷ is measured (again, ŷ is the maximum center

deflection of the FGM plate denoted wFEM
0 ) using the combination of variables and

associated levels shown in Table 8.2. The series of 27 tests necessary to accomplish

this is shown for coded variables and values as well as actual variables and values for

reference.
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Some explanation into the factors and series of experiments is in order. First,

each variable is subject to change in each test according to the order of experiments in

Table 8.2. The variables are tested at three points to check for curvatures when fitting

the model into the form of equation (8.5). The three levels are chosen beforehand

based on some range of interest. In this instance, the levels for each of the three

material coefficients were chosen based on a range of material data from various

authors (see Chapter IV, Section 4.3 for the references and discussion). The three

levels for each velocity were chosen based on the Dynatup tests in order to encompass

the full range of tup velocities (these are velocities in metric units associated with

6750 in/min, 8250 in/min, and 9750 in/min, respectively). The two-phase FEM was

constructed according to the prescribed material properties and velocity levels in

Table 8.2. Aside from these alterations, the two-phase FEM was exactly the same

as described in Chapter VI. Once each FEM had been solved (27 models total), the

maximum transverse deflection of the mid-surface, w0, was extracted from the model

solution. The result of each test is shown in Table 8.2 along with the test settings in

coded and uncoded form.

The next step in the process is to construct the mathematical model (8.5) using

the common least-squares approach. The model is constructed by determining the

b-coefficients. Without derivation, the equations for doing so can be posed in matrix

and vector form by setting:

X =
[

1 x1 x2 x3 x4 x2
1 x2

2 x2
3 x2

4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

]

(8.6)

where in coded form X is tabulated in Table 8.3. A similar array for the actual

variables and values can be tabulated, but second-order terms (that is, terms that

are squared or cross-multiplied) must use the actual values and associated units. For

brevity, only the coded form is shown. There were 27 tests and 15 b-coefficients to

be determined in this math model of the two-phase FEM. Therefore X is a 27 x 15

matrix as shown in Table 8.3. The response variable ŷ corresponds to the transverse
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Table 8.2: Box-Behnken designed experiment for
four factors (TiB material coefficients and tup veloc-
ity) with results from FEM (maximum transverse dis-
placement at center of plate wFEM

0 ) using coded and
actual variables.

Coded Variables Actual Variables Result
Test x1 x2 x3 x4 C1 C2 C3 vtup, m/s wFEM

0 , mm

1 -1 -1 0 0 2.60 0.30 1.00 3.493 0.2849
2 +1 -1 0 0 4.20 0.30 1.00 3.493 0.2401
3 -1 +1 0 0 2.60 0.50 1.00 3.493 0.2827
4 +1 +1 0 0 4.20 0.50 1.00 3.493 0.2374
5 0 0 -1 -1 3.40 0.40 0.90 2.858 0.2250
6 0 0 +1 -1 3.40 0.40 1.10 2.858 0.2248
7 0 0 -1 +1 3.40 0.40 0.90 4.128 0.3003
8 0 0 +1 +1 3.40 0.40 1.10 4.128 0.3003
9 0 0 0 0 3.40 0.40 1.00 3.493 0.2583
10 -1 0 0 -1 2.60 0.40 1.00 2.858 0.2466
11 +1 0 0 -1 4.20 0.40 1.00 2.858 0.2084
12 -1 0 0 +1 2.60 0.40 1.00 4.128 0.3310
13 +1 0 0 +1 4.20 0.40 1.00 4.128 0.2784
14 0 -1 -1 0 3.40 0.30 0.90 3.493 0.2592
15 0 +1 -1 0 3.40 0.50 0.90 3.493 0.2564
16 0 -1 +1 0 3.40 0.30 1.10 3.493 0.2597
17 0 +1 +1 0 3.40 0.50 1.10 3.493 0.2570
18 0 0 0 0 3.40 0.40 1.00 3.493 0.2583
19 0 -1 0 -1 3.40 0.30 1.00 2.858 0.2262
20 0 +1 0 -1 3.40 0.50 1.00 2.858 0.2240
21 0 -1 0 +1 3.40 0.30 1.00 4.128 0.3001
22 0 +1 0 +1 3.40 0.50 1.00 4.128 0.2981
23 -1 0 -1 0 2.60 0.40 0.90 3.493 0.2845
24 +1 0 -1 0 4.20 0.40 0.90 3.493 0.2393
25 -1 0 +1 0 2.60 0.40 1.10 3.493 0.2838
26 +1 0 +1 0 4.20 0.40 1.10 3.493 0.2391
27 0 0 0 0 3.40 0.40 1.00 3.493 0.2583
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deflection wFEM
0 collected in each test. The results of the tests are assembled into a

27 x 1 vector and denoted Y. The vector of coefficients b corresponding to each of

the 15 elements in X is given by:

b =
(
XTX

)−1
XTY (8.7)

The mathematical model for the two-phase FEM’s maximum center transverse dis-

placement was found to be, using this process with unitless coded variables:

ŷ = (−258.34 ∗ 10−6)

+(22.57 ∗ 10−6)x1 + (1.21 ∗ 10−6)x2 + (9.25 ∗ 10−9)x3 + (−37.77 ∗ 10−6)x4

+(−3.39 ∗ 10−6)x2
1 + (420.46 ∗ 10−9)x2

2 + (−42.04 ∗ 10−9)x2
3 + (−4.26 ∗ 10−6)x2

4

+(142.00 ∗ 10−9)x1x2 + (−148.50 ∗ 10−9)x1x3 + (3.60 ∗ 10−6)x1x4

+(−55.50 ∗ 10−9)x2x3 + (−90.75 ∗ 10−9)x2x4 + (−45.25 ∗ 10−9)x3x4

= wFEM
0 (8.8)

where -1 ≤ xi ≤ +1. The units of wFEM
0 are meters. Since the coded variables for

the TiB property coefficients and tup velocity are unitless, all the b-coefficients in

equation 8.8 are in units of meters as well. If uncoded actual variables and values

are used, the two-phase FEM mathematical model can be shown to be, based on the

results in Table 8.2:

ŷ = (−265.42 ∗ 10−6)

+(40.60 ∗ 10−6)C1 + (−17.00 ∗ 10−6)C2 + (19.52 ∗ 10−6)C3 + (−8.50 ∗ 10−6)vtup

+(−5.30 ∗ 10−6)C2
1 + (42.05 ∗ 10−6)C2

2 + (−4.20 ∗ 10−6)C2
3 + (−10.57 ∗ 10−6)v2

tup

+(1.77 ∗ 10−6)C1C2 + (−1.86 ∗ 10−6)C1C3 + (7.09 ∗ 10−6)C1vtup

+(−5.55 ∗ 10−6)C2C3 + (−1.43 ∗ 10−6)C2vtup + (−712.60 ∗ 10−9)C3vtup

= wFEM
0 (8.9)
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Table 8.3: Box-Behnken [22] designed experiment
for four factors with effects and interactions in coded
form. The X 27 x 15 array is tabulated here for the
coded variables.

Test 1 x1 x2 x3 x4 x2
1 x2

2 x2
3 x2

4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

1 1 -1 -1 0 0 +1 +1 0 0 +1 0 0 0 0 0
2 1 +1 -1 0 0 +1 +1 0 0 -1 0 0 0 0 0
3 1 -1 +1 0 0 +1 +1 0 0 -1 0 0 0 0 0
4 1 +1 +1 0 0 +1 +1 0 0 +1 0 0 0 0 0
5 1 0 0 -1 -1 0 0 +1 +1 0 0 0 0 0 +1
6 1 0 0 +1 -1 0 0 +1 +1 0 0 0 0 0 -1
7 1 0 0 -1 +1 0 0 +1 +1 0 0 0 0 0 -1
8 1 0 0 +1 +1 0 0 +1 +1 0 0 0 0 0 +1
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 -1 0 0 -1 +1 0 0 +1 0 0 +1 0 0 0
11 1 +1 0 0 -1 +1 0 0 +1 0 0 -1 0 0 0
12 1 -1 0 0 +1 +1 0 0 +1 0 0 -1 0 0 0
13 1 +1 0 0 +1 +1 0 0 +1 0 0 +1 0 0 0
14 1 0 -1 -1 0 0 +1 +1 0 0 0 0 +1 0 0
15 1 0 +1 -1 0 0 +1 +1 0 0 0 0 -1 0 0
16 1 0 -1 +1 0 0 +1 +1 0 0 0 0 -1 0 0
17 1 0 +1 +1 0 0 +1 +1 0 0 0 0 +1 0 0
18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 0 -1 0 -1 0 +1 0 +1 0 0 0 0 +1 0
20 1 0 +1 0 -1 0 +1 0 +1 0 0 0 0 -1 0
21 1 0 -1 0 +1 0 +1 0 +1 0 0 0 0 -1 0
22 1 0 +1 0 +1 0 +1 0 +1 0 0 0 0 +1 0
23 1 -1 0 -1 0 +1 0 +1 0 0 +1 0 0 0 0
24 1 +1 0 -1 0 +1 0 +1 0 0 -1 0 0 0 0
25 1 -1 0 +1 0 +1 0 +1 0 0 -1 0 0 0 0
26 1 +1 0 +1 0 +1 0 +1 0 0 +1 0 0 0 0
27 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Here, the actual variables are substituted in place of xi to distinguish from the coded

counterpart equation (8.8). Units associated with each b-coefficient are not shown

because they can be complex and not physically meaningful based on the matrix-

vector multiplication in 8.7.

The coded mathematical model in (8.8) was used in the parameter estimation

sequence. Thus, a coded value of C1, C2, C3, and vtup must be used in equation (8.8).

The relations for a general uncoded value (Ci, vtup) of a parameter and its associated
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coded value (xi) are:

x1 =
C1 − C0

1

C+1
1 − C0

1

x2 =
C2 − C0

2

C+1
2 − C0

2

x3 =
C3 − C0

3

C+1
3 − C0

3

x4 =
vtup − v0

tup

v+1
tup − v0

tup

where a superscript of +1 or 0 refers to the coded level of that parameter (see Table

8.1). In the relations Ci is the actual value of the parameter. Any value of Ci or

vtup can be used in (8.8) provided it is converted to a coded value and it within the

limits of the +1 level and -1 level of the parameter (usually the +1 and -1 levels

are taken at the upper and lower bounds for the variable, but not always so). The

mathematical model should in general not be assumed reliable outside the limits of the

tests, although it may be applicable to points in the set just outside the constraints

(this is more of a judgment call based on subsequent tests and experience with the

model).

The order of the tests were conducted in the order of Table 8.2 and the order

itself was not randomized. Physical experiments should be randomized to account for

effects that may affect test results (for instance, environmental conditions or different

material lots), however in the computer simulation environment these factors really

do not come into play and the order of the tests will not directly affect results.

The mathematical model (8.8) could have been refined by removing terms with

coefficients that are sufficiently small that their contributions to the overall solution

are very minor. In particular, some of the coefficients associated with the density

parameter are small compared to the other coefficients. This is not unexpected since

the density of Ti and TiB are close and the FST predictions do not require density

for calculation since quasi-static assumptions were made. There are methods for
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determining which terms of this nature can be removed without appreciably affecting

results, however this was not done in this case.

In Table 8.4, the predictions from the mathematical model (8.8) are compared

to those collected in the FEM tests (Table 8.2 is reproduced here). Just by inspecting

the data, it is clear the mathematical model predicts the actual FEM test data at

the values of the variables where data was collected very well. In fact, the sum of the

squared errors for the model (SSE) is calculated by:

SSE =
∑

(yi − ŷi)
2 = 6.179 ∗ 10−12 ≈ 0 (8.10)

and the sum of the squared totals (SST)

SST =
∑

(yi − ȳ)2 = 23.47 ∗ 10−9 ≈ 0 (8.11)

where yi are the individual test results and ŷi are the corresponding predictions for

yi using equation (8.8). ȳ is the mean of the 27 FEM tests. Low values of SSE are

desired; the higher the value, the less the data corresponds with the mathematical

model. SST is the sum of the square deviations of Y data from the average. A metric

associated with SSE and SST is called the R2 metric:

R2 = 1 − SSE

SST
= 0.9997 (8.12)

where 0 < R2 < 1 . A value close to one is desired and is interpreted as a high corre-

lation between the mathematical model and the data. The high degree of correlation,

despite the random distribution of constituents, is likely due to the very fine mesh in

the plate FEMs. In other words, the small element size minimizes the probability that

elements of a single constituent will be clustered together to affect the global response.

This is an important conclusion that will be addressed again at a later time. There

are other mathematical metrics that could be considered, but given the demonstrated

high degree of correlation between the math model of the FEM and the two-phase
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Table 8.4: Box-Behnken designed experiment for
four factors (TiB material coefficients and tup veloc-
ity) with results from FEM (maximum transverse dis-
placement at center of plate w0) in coded form.

Coded Variable Result Predicted
Test x1 x2 x3 x4 wFEM

0 , mm wFEM
0 , mm

1 -1 -1 0 0 0.2849 0.2849
2 +1 -1 0 0 0.2401 0.2401
3 -1 +1 0 0 0.2827 0.2828
4 +1 +1 0 0 0.2374 0.2374
5 0 0 -1 -1 0.2250 0.2249
6 0 0 +1 -1 0.2248 0.2248
7 0 0 -1 +1 0.3003 0.3004
8 0 0 +1 +1 0.3003 0.3004
9 0 0 0 0 0.2583 0.2583
10 -1 0 0 -1 0.2466 0.2472
11 +1 0 0 -1 0.2084 0.2093
12 -1 0 0 +1 0.3310 0.3299
13 +1 0 0 +1 0.2784 0.2776
14 0 -1 -1 0 0.2592 0.2592
15 0 +1 -1 0 0.2564 0.2567
16 0 -1 +1 0 0.2597 0.2591
17 0 +1 +1 0 0.2570 0.2568
18 0 0 0 0 0.2583 0.2583
19 0 -1 0 -1 0.2262 0.2257
20 0 +1 0 -1 0.2240 0.2231
21 0 -1 0 +1 0.3001 0.3011
22 0 +1 0 +1 0.2981 0.2988
23 -1 0 -1 0 0.2845 0.2845
24 +1 0 -1 0 0.2393 0.2391
25 -1 0 +1 0 0.2838 0.2842
26 +1 0 +1 0 0.2391 0.2393
27 0 0 0 0 0.2583 0.2583
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FEM itself, no more demonstration of the applicability is necessary. The mathemat-

ical model wFEM
0 will be used as part of the parameter estimation sequence in the

remainder of the chapter.

8.3 Solution to the Minimization Problem

As a recap, estimation of the FGM properties has been posed such that the

difference between the transverse deflection at the center of the FGM plate in the two-

phase finite element model and analytical model of the impact tests is minimized. The

difference in solutions is minimized by varying the set of material property estimates

for TiB given constant properties of Ti and the properties of TiB are the properties

of Ti multiplied by a constant. The properties are varied until the square of the

differences converges to a minimum. The same properties are used in the two-phase

FEM as in the analytical model. To this point, it has been shown how to obtain the

center displacement from the two-phase FEM and from analytical theory. Nothing

has been said regarding how the minimization problem is solved; this will be done

in this section. The implementation of the parameter estimation sequence will be

outlined in the following section.

The literature dedicated to minimization problems of one or more variables is

very rich, and numerous excellent textbooks and papers can be found in mathemat-

ics, engineering, and sciences where minimization problems are solved for countless

applications. The theory will not be derived in this section, however the necessary

concepts required to solve and implement the minimization will be presented in the

context of this application. The theory presented in this section is summarized wholly

from the textbooks by Arora [8], Haftka et al. [52], and Dennis & Schnabel [37].
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8.3.1 General Constrained Minimization Problem. The constrained mini-

mization problem is generally defined as:

min f(x) = f(x1, ..., xn)

Subject to h(x) = 0

g(x) ≤ 0 (8.13)

where f is termed the objective function, a mathematical function of design variable

x = (x1, ..., xn); h = hi are a set of i = 1, ..., p equality constraint equations, and g

= gi are a set of i = 1, ..., m inequality constraint equations. (Regarding notation, hi

in this section should not be confused with plate thickness h used in other chapters.

Additionally, x was used in the previous section as notation for coded variables in the

second-order math model of the FGM plate deflection; in this section it is merely a

general design variable.)

The objective function, equality constraints, and inequality constraints can be

combined into a new, single equation called the Lagrange function L, defined as:

L(x, λ, µ) = f(x) + λTh(x) + µTg(x) (8.14)

λ and µ are two vectors of Lagrange multipliers, one vector for the p equality con-

straints and one vector for the m inequality constraints, respectively. The Lagrange

multipliers are not functions of the design variable x. The Lagrange function will be

used to minimize the objective function f(x) momentarily.

A couple notes from multivariable calculus are in order. First, for a general

function F (x), the gradient of F (denoted as ∇F ) at some arbitrary point x∗ is given

by:

∇F (x∗) =
[

∂F (x∗)
∂x1

,
∂F (x∗)

∂x2
, · · · ,

∂F (x∗)
∂xn

]T

(8.15)
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The Hessian H of F is determined by differentiating the gradient vector and is given

by:

H =
∂2F

∂x∂x
=




∂2F
∂x1∂x1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xn

∂2F
∂x2∂x1

∂2F
∂x2∂x2

· · · ∂2F
∂x2∂xn

...
...

...

∂2F
∂xn∂x1

∂2F
∂xn∂x2

· · · ∂2F
∂xn∂xn




(8.16)

The Hessian matrix is a symmetric matrix where each element of the matrix is a func-

tion of x. Without derivation, a necessary condition for a local extremum, maximum

or minimum, at x∗ is that the gradient of F is zero:

∇F (x∗) = 0 (8.17)

A sufficient condition for a local minimum of F at x∗ is the Hessian matrix evaluated

at x∗must be positive definite, meaning all eigenvalues of H(x∗) are greater than zero.

Note that it is also necessary that the Hessian of F be at least positive semi-definite

for F (x∗) to be a minimum, meaning that all eigenvalues of H(x∗) are greater than

or equal to zero. These concepts can be thought of in another way. First, the gradient

vector points in the direction of maximum increase in a function. At a minimum or

maximum point, the gradient equaling zero more or less says that the function does

not necessarily increase or decrease initially in any one direction. The requirement

of H to be positive definite for a minimum simply means that F curves upward at

x∗. The “necessary” and “sufficient” conditions are simply what their names imply.

It is necessary that the gradient of a function at its minimum be equal to zero, but

that does not tell us for sure if we are actually looking at a minimum or a maximum

point. It is necessary for the Hessian of F to be positive semi-definite at a minimum

point, but without knowing if the gradient is zero at that point it is not clear if

the point is indeed a minimizer. However, if H(x∗) is positive-definite, then x∗ is a
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minimizer of F without requiring a check on the gradient at that point...that is, it is

sufficient information to make the judgment that x∗ is a minimizer without knowing

anything else about F . On the other hand, if it is desired to maximize a function

rather than minimize, the necessary conditions for a maximum of F at x∗ is that the

gradient is equal to zero and the Hessian is negative semi-definite at the point x∗. A

sufficient condition for maximization of F at x∗ is that the Hessian at that point is

negative-definite. An indefinite Hessian implies neither a maximum or minimum of

F at x∗.

Returning to the Lagrange function (8.14), the minimization of f subject to

the equality and inequality constraints is accomplished by finding a point x∗ and

associated Lagrange multipliers λ∗ & µ∗ that minimize the Lagrange function. The

necessary conditions for minimizing L such that f is minimized and satisfies the

equality and inequality constraints are as follows, known as the Kuhn-Tucker (K-T)

necessary conditions:

∂L
∂xj

≡ ∂f

∂xj

+

p∑
i=1

λi ∗ ∂hi

∂xj

+
m∑

i=1

µi ∗ ∂gi

∂xj

= 0; j = 1 to n

hi(x∗) = 0; i = 1 to p

gi(x∗) ≤ 0; i = 1 to m

µi ∗ gi(x∗) = 0; i = 1 to m

µi∗ ≥ 0; i = 1 to m (8.18)

Since L is a function of the design variable and two sets of Lagrange multipliers,

the gradient of L involves partial derivatives of the individual elements of the design

variable and Largrange multiplier vectors. If the gradient of L is evaluated at a

minimum point, its gradient will be zero (a necessary condition). The first condition of

the K-T conditions is merely stating that the first partial derivatives of L with respect

to the design variable elements xj must be zero. These equations represent a portion

of the total gradient vector for L. The next condition on the Lagrange function is that
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the equality constraints hi at the minimum point must be satisfied. This satisfies the

conditions on the objective function f (equation (8.13)), but this K-T condition really

comes from taking the partial derivative of L with respect to each of the first set of

Lagrange multipliers in λ and requiring these partial derivatives to be zero to meet

the condition that all elements of the gradient equal zero at the minimum point. The

next two of the five conditions must be treated simultaneously. The third condition,

requiring gi to be less than or equal to zero, is a similar consequence of taking the

partial derivative of L with respect to each of the second set of Lagrange multipliers

in µ and requiring these partial derivatives to be zero to meet the condition that all

elements of the gradient equal zero at the minimum point. However, the inequality

constraints do not require that gi be zero but rather less than or equal to zero. The

fourth and fifth conditions, µi∗gi(x∗) = 0 and µi∗ ≥ 0, address the inequality portion

of the third requirement. In the fourth condition, if gi is non-zero, µi∗ is required

to be zero. If gi is zero, µi∗ is required to be non-zero. If µi∗ is zero, meaning the

constraint is satisfied as an inequality constraint, the constraint can be thought of

as inconsequential to L and is more or less not included, meaning there is one less

partial derivative to assess in µ. If µi∗ is non-zero, the partial derivative must be

accounted for and gi behaves more like an equality constraint. In either case, the

terms involving µ∗ and gi do not contribute to the value of L at the minimum point

x∗. The same can be said of hi at the candidate minimum point. This is how a

Lagrange function can be used to satisfy the requirements of equation (8.13) using a

completely different function L. Lastly, the fifth requirement that µi∗ ≥ 0 must be

satisfied is associated with the interpretation of the Lagrange multipliers. Without

getting into the mathematical details associated with the multipliers, the physical

interpretation of them in the context of the minimization problem is the amount

of effort (or “force”) required mathematically to enforce the constraint equations

(both equality and inequality) while searching for a minimum of L over the region of

interest. At the minimum point, µi∗ ≥ 0 ensures that the gradients of the objective
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and constraint equations point in opposite directions so that f cannot be reduced

further in a negative gradient direction without violating constraints.

Another point regarding the Kuhn-Tucker conditions is worth mentioning. If

the K-T conditions are satisfied, it is true that an extremum has been reached in L.

However, it does not necessarily imply that the point is a minimum. To verify that the

candidate point is indeed a minimum, the Hessian of L must be at least positive semi-

definite (to satisfy the necessary second-order condition) or at best positive-definite

(a sufficient condition for a minimum point). The Hessian of L consists of second

partial derivative terms including all the design variables and Lagrange multipliers

(in essentially the same form as equation (8.16)).

Now that a little general knowledge of the minimization problem is understood,

it will be applied directly to the problem at hand in the following paragraphs.

8.3.2 FGM Plate Parameter Estimation Problem. The minimization prob-

lem from (8.1) is copied here for reference:

min f =
(
wFST

0 − wFEM
0

)2

Subject to Cmin
1 ≤ C1 ≤ Cmax

1

Cmin
2 ≤ C2 ≤ Cmax

2

Cmin
3 ≤ C3 ≤ Cmax

3 (8.19)

(8.1) is termed a constrained minimization problem due to the minimum and maxi-

mum constraints on the C = Ci (i = 1, 2, 3) values. The constrained minimization
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problem can rewritten in the following fashion:

f(C) =
(
wFST

0 (C1, C2)− wFEM
0 (C1, C2, C3)

)2

g1(C) = Cmin
1 − C1 ≤ 0

g2(C) = C1 − Cmax
1 ≤ 0

g3(C) = Cmin
2 − C2 ≤ 0

g4(C) = C2 − Cmax
2 ≤ 0

g5(C) = Cmin
3 − C3 ≤ 0

g6(C) = C3 − Cmax
3 ≤ 0 (8.20)

f(C) is termed the objective function and the equations gi(C) in (8.20) are the in-

equality constraint equations. The objective function and the constraint equations are

combined into a a Lagrange equation, as follows:

L = f(C) + µTg(C) (8.21)

µ is a vector of Lagrange multipliers, one for each inequality constraint equation.

g(C) is the vector of constraint equations gi. In our case, we have six Lagrange

multipliers and six constraint equations. The minimum point of L(C) occurs at [C∗,
µ∗], subject to the Kuhn-Tucker necessary conditions. If the point C∗, µ∗ is truly a

minimizer of L, then the Hessian of L will be at least positive semi-definite and at

best positive-definite to satisfy the necessary and sufficient conditions for a minimum

point.

The minimization problem will be solved numerically. The mathematical model

for the two-phase FEM is rather straightforward, however the analytical prediction

for wFST
0 is very difficult to evaluate into a simple closed-form relationship. All partial

derivatives will be evaluated numerically and the solution to find the minimizer of L
will be conducted using a modified Newton’s method. These will be explained in the

following paragraphs.
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8.3.3 Numerical Solution. The concepts of this discussion are summarized

primarly from the numerical analysis text by Dennis & Schnabel [37], with some

additional inputs from [8], [52], and [143]. The minimization problem in equation

(8.1) in terms of the Lagrange equation (8.21) was solved using a modified form of

Newton’s method. The choice of Newton’s method versus other numerical techniques

was based in its simplicity and ease of implementation, although almost any similar

technique could in theory be used. A derivation of Newton’s method will not be

provided, but the reader can refer to the references above for additional details.

Newton’s method is designed to solve the following problem:

Given F : <n → <n, find x∗ ∈ <n such that F (x∗) = 0 (8.22)

where F is a system of nonlinear equations f1, f2,..., fm (m here is not the same num-

ber as the number of m inequality constraints) that are continuously differentiable.

The Newton’s Method algorithm to solve the series of nonlinear equations F = 0 is

to solve the following at each iteration k = 0, 1, ... :

J(xk) sk = −F (xk)

xk+1 = xk + sk (8.23)

where the initial guess for xk is x0 ∈ <n. J(x) is the Jacobian (m x n) matrix

J(x) = F ′(x)ij =
∂Fi

∂xj

(x) = ∇F T (x) (8.24)

The algorithm terminates when x has converged acceptably (usually by some user-

determined convergence criteria) to a solution x∗. Depending on the nature of F ,

the initial guess x0 for the solution x∗ can be important. If F has multiple solutions,

potentially Newton’s method could converge to a local minimum that is less optimal

than another local minimum or even a global minimum. Another important point is
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that convergence can be slow if the solution to F is near a “plateau” where local x in

the vicinity of x∗ produce F results that are very close to F = 0.

In the case of the minimization problem, we want to satisfy the necessary con-

dition that the gradients of the Lagrange equation are equal to zero under the Kuhn-

Tucker conditions. In the context of this problem, Newton’s method solves:

Given L : <n → <, f ind x̄∗ ∈ <n such that ∇L(x̄∗) = 0 (8.25)

and the algorithm is given by

∇2L(x̄k) sk = −∇L(x̄k)

x̄k+1 = x̄k + sk (8.26)

where ∇2L(x) is the Hessian of L as described in equation (8.16). x̄ is, for the general

optimization problem, [x, λ, µ]. In the FGM plate parameter estimation problem,

there were no equality constraints so x̄ = [x, µ].

A few problems can arise in the implementation of the general Newton’s method.

First, the solution can tend to become unbounded if the Hessian is nearly singular

at one or more iterations. This problem is inherent in Newton’s method algorithms.

Also, there is no guarantee that the algorithm will not converge to a maximum point

instead of a minimum point. The second problem is addressed by employing a modi-

fied Newton’s method. This algorithm was used to solve this particular minimization

problem. In the modified Newton’s method, solve the following [47], [37]:

Given L : <n → <, f ind x̄∗ ∈ <n such that ∇L(x̄∗) = 0 (8.27)
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and the algorithm is

Hk = ∇2L(x̄k) + Γk I

Hk sk = −∇L(x̄k)

x̄k+1 = x̄k + sk (8.28)

Γk is a coefficient at each iteration and I is the identity matrix. ∇2L(x̄k) is tested for

positive definiteness at each iteration. If ∇2L(x̄k) is positive definite at iteration k,

Γk is set equal to zero. If ∇2L(x̄k) is not positive definite, Γk is set sufficiently large so

that when multiplied by the identity matrix and added to ∇2L(x̄k), the new matrix

Hk is positive definite. There are many ways to accomplish this, but in this work

Γk was programmed to be larger than the magnitude of the most negative eigenvalue

of ∇2L(x̄k); a technique proposed by Dennis and Schnabel [37]. If ∇2L(x̄k) was at

least positive semi-definite, Γk was set to zero. By forcing the Hessian (or modified

Hessian) to be positive semi-definite at each iteration, the method is forced to move

toward a minimizing direction.

The complexity of evaluating wFST
0 is such that analytical formulas for the gra-

dient and Hessian of L are extremely difficult to obtain. Numerical partial derivatives

were used to estimate the gradient and the Hessian at each iteration [37]. To estimate

the gradients and Hessians, the following equations were used at each iteration:

∇Li =
L(x̄ + τ ei)− L(x̄− τ ei)

2 τ
(8.29)

∇2Lij =
L(x̄ + τ ei + τ ej)− L(x̄ + τ ei)− L(x̄ + τ ej) + L(x̄)

τ 2
(8.30)

where τ is the step size for incrementation (not to be confused with the equality

constraints) and ei is the i-th unit vector (a value of one at element i and zeros

everywhere else). The estimates work well provided the step-size is kept small since

both numerical estimates have error of order O(τ). These estimates were chosen

because of their simplicity in implementation, although note that there are other
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numerical estimates for both the gradient and Hessian available in the literature with

significantly less error associated with them that allow larger choices of τ .

The modified Newton’s method solution was terminated once the changes in

the gradient of L from one iteration to the next were very small. This was done by

evaluating the vector norm of the gradient at the current iteration and comparing

it to the vector norm of the previous iteration. If the change in the value of the

norm was sufficiently small (that is, the norm did not change by more than 0.0001),

the solution was terminated. The gradient of L was checked to make sure the final

iteration brought the solution to within numerical error of zero. The Hessian was

also evaluated at the final iteration to ensure that the matrix was positive definite.

The results, presented in the next section, were all found to satisfy the necessary and

sufficient conditions for a minimum of L in all cases.

One last note regarding the solution to a minimum. It has not and will not

be proved in this chapter that our Lagrange function is a convex function. Convex

functions are functions defined on convex sets (that is, a set S in <n is called convex

if, for every pair of x and y in S and every real θ that satisfies 0 < θ < 1, θx + (1 - θ)y

∈ S [7]; geometrically this means a line segment drawn between two points contained

in S is contained wholly in S), but not all functions defined on convex sets are convex

functions. A function defined on a convex set is convex if its Hessian is positive

semi-definite or positive definite for all points in the convex set. Convex functions

have a nice property that a local minimum of the function in the convex set is also a

global minimum [8]. In terms of the optimization problem, the set of design variables

C is convex because the inequality constraints are convex functions themselves (due

to their linearity and our definition of a convex function) [8]. If equality constraints

were present, they would need to be linear for the set to be convex [8]. Whether

or not the Lagrange function is convex is difficult to prove since analytical gradients

and Hessians are not determined. It is much easier to prove convexity with analytical

functions. At this time, it will be assumed that the Lagrange function is not convex

and care will be taken with the numerical solutions presented in the following pages.
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8.4 Implementation

The following is a summary of the steps to implement this parameter estimation

sequence. This sequence is demonstrated using the Ti-TiB FGM, but the steps to

carry out the estimation can be used with any two-constituent material system eval-

uated in the manner the Ti-TiB FGM plates have been in this dissertation. It will be

assumed that a mathematical model for the finite element response of the FGM has

already been determined.

1. Set the material properties of one constituent to be held constant, named con-

stituent 1 here (Ti for this study). (This choice should be based on strong

knowledge of the properties of this constituent from extensive published data;

if this is not available, one must use best engineering judgment in choosing the

constituent whose properties should be set constant). The properties of con-

stituent 2 (TiB) will be a set of constants multiplied by the set of material

properties for the first constituent:

FGM Constituent 1: P1, P2, ..., Pn

FGM Constituent 2: C1*P1, C2*P2, ..., Cn*Pn

2. Determine limits for the constants as constraints on the solution.

3. Assemble the objective function and constraints into the minimization problem

(8.20). Form the Lagrange function by augmenting the objective function with

the constraint relations multiplied by the set of Lagrange multipliers.

4. Choose a set of constants C1, ..., Cn as an initial estimate for the properties

of constituent 2 within the constraints of the set. Set the vectors of Lagrange

multipliers to zero. Assemble the vector C̄k = [Ck, µk]. At this initial estimate,

k = 0. Choose numerical step-size τ (a fixed step-size was used here but a

variable step-size could potentially be used to increase fidelity) and convergence

tolerance criteria to terminate the numerical solution.

5. Evaluate the gradient and Hessian of L at C̄k.
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6. Use the current properties for constituents 1 and 2 to solve for the transverse

displacement of the FGM plate at the center with the mathematical model for

the finite element tests, wFEM
0 .

7. Using the strain gage data (maximum radial strains) from the nominal radial

plate locations and the current estimate for the material properties of con-

stituents 1 and 2, solve for the maximum impact load P from the impact event

through equation (7.69). Use this P load and the current estimate for the ma-

terial properties of constituents 1 and 2 to solve for the maximum transverse

displacement wFST
0 at the center of the plate through equation (7.63).

8. Solve for the current estimate of L using the solutions of wFST
0 , wFEM

0 , and the

current estimate for C̄k.

9. Perform the modified Newton’s method iteration (8.28) to solve for C̄k+1.

10. Evaluate the gradient and Hessian of L at the updated C̄k+1.

11. Compare the norm of ∇L(C̄k) to the norm of ∇L(C̄k+1). If the absolute value

of the difference of the two norms is less than a pre-defined tolerance, terminate

solution and go to the next step. Else, set k +1 = k and go to step 6.

12. If∇2L (Hessian) at the updated C̄k+1 is positive definite and∇L at the updated

C̄k+1 is sufficiently close to zero (determined by a user-defined metric), terminate

solution and analyze minimum point. If minimum point is determined to be not

acceptable, adjust initial choice of C̄0 and repeat process.

8.5 Results

Here the results of the parameter estimation sequence will be evaluated. Only

the FGM plate impact experiments will be discussed, since the parameter estimation

sequence was designed to study these plates and not the monolithic plates. Addition-

ally, this work is primarily interested in characterizing the response of FGM plates

and not monolithic plates.
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Table 8.5: Summary of FGM plate impact tests us-
ing Dynatup apparatus.

Test Crosshead Crosshead Velocity, Impact
No. Description Mass (kg) Height (m) Actual (m/s) Energy (J)

7 7-Layer Ti-TiB FGM 13.06 0.508 3.040 60.35
8 7-Layer Ti-TiB FGM 13.06 0.635 3.412 76.02
9 7-Layer Ti-TiB FGM 13.06 0.762 3.765 92.56
10 7-Layer Ti-TiB FGM 13.06 0.889 4.078 108.6

The test results related to the FGM plate experiments are recopied in Table

8.5 for reference throughout this section. The parameter estimation sequence was

conducted as described in this chapter using four material models to estimate the an-

alytical prediction of wFST
0 . These models were the classic rule-of-mixtures (ROM),

the self-consistent model (SC), the Mori-Tanaka needles estimate (MT-N), and the

Mori-Tanaka spheres estimate (MT-S). Refer back to Chapter III for detailed infor-

mation on these models. The initial estimates for the material parameters published

in this section were C1 = 3.40, C2 = 0.40, and C3 = 1.00; essentially the center points

from the Box-Behnken tests in Table 8.1. The choice of these initial values here was

merely for conceptual convenience only and the choice of initial values is more or less

arbitrary in the region of interest. The minimum and maximum constraints on the

parameters are the minimum and maximum levels for each parameter shown in Table

8.1 relaxed by 20% in each direction. Given the high degree of correlation in the

second-order math model for the two-phase FEM, it was felt that this range would

be accurate to the two-phase FEM without running further tests in the Box-Behnken

FEM tests. Note that while the results published in this section may not represent

global minimums of L (recall that analytically the convexity of the objective func-

tion was not evaluated) for the region of interest here, various initial estimates were

taken throughout the region, including points on the boundary from the inequality

constraints, and in all cases the algorithm converged to a very similar solution for the

material parameters. The solutions found for these parameters are shown in Table 8.6

as tested for the four material models and experimental tests 7-9 (recall that the FGM

213



Table 8.6: Comparison of predicted coefficients for
TiB material properties using the parameter estima-
tion technique and four different material models. Ini-
tial estimates for the material parameters were C1 =
3.40, C2 = 0.40, and C3 = 1.00.

Material Model
Test Coeff. ROM SC MT-S MT-N

7 C1 2.549 2.468 2.494 2.486
C2 0.3478 0.3583 0.3594 0.3602
C3 0.9458 0.9414 0.9409 0.9408

8 C1 2.309 2.239 2.256 2.250
C2 0.3468 0.3551 0.3573 0.3572
C3 0.9325 0.9298 0.9277 0.9281

9 C1 2.442 2.367 2.389 2.381
C2 0.3355 0.3424 0.3439 0.3441
C3 0.9540 0.9508 0.9501 0.9501

Table 8.7: Comparison of predicted coefficients for
TiB material properties based on average from results
shown in Table 8.6.

Material Model
Coeff. ROM SC MT-S MT-N

C1 2.433 2.358 2.380 2.372
C2 0.3434 0.3519 0.3535 0.3538
C3 0.9441 0.9407 0.9396 0.9397

plate in Test 10 failed so data was not used in the estimation sequence from that test).

When the FEM mathematical model was used to estimate wFEM
0 for iterations of the

parameter estimation sequence, the velocity from the Dynatup experiment was used

for vtup and held constant. Thus, wFEM
0 for each estimation sequence was reduced to

a function of C1, C2, and C3.

The estimates for the coefficients C1, C2, and C3 in Table 8.6 show that in general

all models estimated similar results for the three parameters. The difference in results

is associated directly with the material models themselves and their estimates for

material properties in each layer of the FGM. To illustrate this, consider the transverse

displacements at the center of the plates at the minimization of L summarized in Table
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Table 8.8: Predicted maximum center displacement
of plate at center of bottom surface using the predicted
TiB coefficients in Table 8.6. All units in millimeters.

Material Model
Test Method ROM SC MT-S MT-N

7 Plate Theory 0.25926 0.26197 0.26107 0.26136
FEM Math Model 0.25927 0.26198 0.26108 0.26137

8 Plate Theory 0.29064 0.29336 0.29268 0.29291
FEM Math Model 0.29065 0.29337 0.29269 0.29292

9 Plate Theory 0.30959 0.31261 0.31170 0.31199
FEM Math Model 0.30960 0.31262 0.31171 0.31200

8.8. In all cases the parameter estimation sequence virtually estimated the same plate

deflections at the center regardless of material model. Recall the estimation sequence

was tied directly to the results of the plate experiments for all material models. Since

the Ti-TiB plates should ideally have the same composition through the thickness

and the plates should have the same average behavior in each layer regardless of the

material model chosen, it should be expected that the parameter estimation sequence

would converge to very similar material properties for each layer and adjust Ci so

that the material model reflects this. In Table 8.9, it is evident that this is indeed

the case. The material property estimates (E and ν only) in each layer, based on the

average results for Ci in Table 8.7 show a very strong degree of correlation between

the layers. Further, the estimates for these layers based on Ci correlate well with the

published results determined experimentally. The correlation between the published

results is strongest at low-medium volume fractions of TiB and weakest (but still

pretty good) at higher volume fractions of TiB. This is very likely associated with

residual titanium diboride known to be present at higher volume fractions of TiB (see

Chapter IV) affecting the predictions from the estimation sequence.

In Chapter VII, it was shown that the maximum impact force P in each test

could be related to the maximum radial strains at points on the plate. Since the

force data was not collected during the tests, the strain histories from the plates were
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Table 8.9: Elastic property data from parameter es-
timation scheme for Ti-TiB volume ratios using the
(averaged) predicted values from the four material
models in the estimation sequence, compared to prop-
erties determined experimentally in the literature.

Configuration Ref. [55] ROM SC MT-S MT-N
%Ti %TiB E, GPa E, GPa E, GPa E, GPa E, GPa

15 85 274.3 244.0 231.7 234.3 232.7
25 75 247.6 228.2 213.9 217.0 215.2
40 60 193.7 204.6 188.4 192.6 190.8
55 45 162.2 180.9 165.1 169.9 168.2
70 30 139.4 157.3 144.1 148.6 147.4
85 15 120.1 133.6 125.8 128.7 128.0
100 0 106.9 110.0 110.0 110.0 110.0

Configuration Ref. [55] ROM SC MT-S MT-N
%Ti %TiB ν ν ν ν ν

15 85 0.170 0.150 0.161 0.160 0.161
25 75 0.182 0.173 0.187 0.185 0.187
40 60 0.216 0.206 0.225 0.220 0.222
55 45 0.246 0.240 0.259 0.253 0.255
70 30 0.276 0.273 0.290 0.284 0.286
85 15 0.310 0.307 0.317 0.313 0.314
100 0 0.340 0.340 0.340 0.340 0.340
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Table 8.10: Predicted maximum force applied to
the plate at instant of maximum center displacement
using the predicted TiB coefficients in Table 8.6. All
units are in kilonewtons.

Material Model
Test Method ROM SC MT-S MT-N

7 Strain Gage 1 96.24 92.57 93.61 93.22
Strain Gage 2 131.75 126.82 128.16 127.61
Strain Gage 3 96.35 92.88 93.73 93.32
Average Load 108.11 104.09 105.16 104.72

8 Strain Gage 1 111.15 107.91 108.81 108.46
Strain Gage 2 130.31 126.58 127.58 127.16
Strain Gage 3 101.52 98.72 99.42 99.09
Average Load 114.33 111.07 111.94 111.57

9 Strain Gage 1 121.29 117.18 118.36 117.91
Strain Gage 2 157.87 152.63 154.07 153.47
Strain Gage 3 97.924 94.78 95.57 95.19
Average Load 125.70 121.53 122.67 122.19

used to estimate P . The predictions of load P are affected by the material properties

through the FGM plates. In Table 8.10, the estimated force P based on the strain

histories in each test at each location are compared with the different material models

used to predict Ci. The average predicted load was calculated at each iteration of

the parameter estimation sequence. The data in table yields some interesting results.

First, the average P for each test matches very well regardless of material model.

This is another verification of the statement that the estimation sequence attempts

to match the properties in each layer to the actual FGM within the framework of

the material model used in the sequence. Secondly, the results show the trend that

the force increases as the velocity/energy increases for each test. Lastly, the P loads

individually calculated at each position vary somewhat in each test, adding verification

to the claim of the variability that occurred in strain gage placement on each plate

(due to human error).
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Table 8.11: Maximum strains from the three strain
gages for the tests, the Mori-Tanaka needles estimates
(MT-N, reproduced from Chapter VI) and the Mori-
Tanaka needles estimates using the parameter estima-
tion scheme (MT-N/PE).

Maximum Strains (Gage 1)
Test Description Test MT-N MT-N/PE

7 7-Layer Ti-TiB FGM 0.001460 0.001621 0.001741
8 7-Layer Ti-TiB FGM 0.001783 0.001737 0.001858
9 7-Layer Ti-TiB FGM 0.001889 0.001885 0.002016
10 7-Layer Ti-TiB FGM Failed 0.002057 0.002199

Maximum Strains (Gage 2)
Test Description Test MT-N MT-N/PE

7 7-Layer Ti-TiB FGM 0.001391 0.001281 0.001337
8 7-Layer Ti-TiB FGM 0.001468 0.001358 0.001449
9 7-Layer Ti-TiB FGM 0.001720 0.001890 0.001558
10 7-Layer Ti-TiB FGM Failed 0.002061 0.001724

Maximum Strains (Gage 3)
Test Description Test MT-N MT-N/PE

7 7-Layer Ti-TiB FGM 0.0006638 0.0005626 0.0005797
8 7-Layer Ti-TiB FGM 0.0007573 0.0008032 0.0008284
9 7-Layer Ti-TiB FGM 0.0007016 0.0006498 0.0006564
10 7-Layer Ti-TiB FGM Failed 0.0009522 0.0009839
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Figure 8.1: Test 7 experimental strain histories & FEM com-
parison using optimized Mori-Tanaka Needles plate models: a)
strain gage 2, b) strain gage 3.

Figure 8.2: Test 8 experimental strain histories & FEM com-
parison using optimized Mori-Tanaka Needles plate models: a)
strain gage 2, b) strain gage 3.
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Figure 8.3: Test 9 experimental strain histories & FEM com-
parison using optimized Mori-Tanaka Needles plate models: a)
strain gage 2, b) strain gage 3.

Figure 8.4: Test 10 experimental strain histories & FEM com-
parison using optimized Mori-Tanaka Needles plate models: a)
strain gage 2, b) strain gage 3.
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Lastly, Figures 8.1-8.4 show the strain histories from the homogenized-layers

FEMs using the Mori-Tanaka needles material model results compared to the experi-

mental strain histories for FGM plate tests 7-10 (Ci per Table 8.7). The other models

were not plotted simply because the results were virtually the same (as demonstrated

through the correlation of layer-by-layer material properties). The FEM results match

the test data very well for the most part, but it appears that little improvement of the

overall histories was gained through the parameter estimation process (compare with

the plots of Chapter VI). Most of the peculiarities observed in the experimental strain

histories (discussed in Chapter V) are still not captured with the optimized FEMs

and therefore more investigation needs to be conducted into the FGM plates and the

Dynatup plate-tup interactions in the laboratory. The FEM determined through this

process, however, correlates much better with published results and was developed

through a process more directly tied to the physics and results of the Dynatup impact

tests. For this reason, the model for the FGM plates developed in this chapter will

be used exclusively through the remainder of this work.

8.6 Closing

This chapter described a parameter estimation sequence that can be used to

estimate the material properties of FGM plates. The sequence ties experimental, an-

alytical, and computational data from FGM plate impact events together and poses

the estimation sequence as a sophisticated minimization problem. The results of

the sequence were shown to correlate well with published material data available in

the literature and matched trends observed and expected from the FGM plate im-

pact experiments. The optimized model of the FEM was shown to emulate the plate

experiments well, but little improvement was obtained over and above the models dis-

cussed in previous chapters where material properties of the Ti-TiB constituents and

the material models relating the properties and volume fractions of the constituents

were assumed to be known. The parameter estimation sequence nevertheless simul-

taneously satisfied two objectives in this research: (1) correlate the results from the
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experiments and finite element models to available analytical theory and (2) refine

the finite element material models using parameter estimation techniques to more ef-

fectively and accurately simulate the FGM plate impact experiments. The parameter

estimation sequence is a valuable contribution to the field of FGMs given that the

method has been demonstrated to effectively link analytical theory, computer simula-

tions, and experimental data for a metal-ceramic FGM system, and the sequence is

theoretically applicable to other FGM systems as well.

Before concluding this chapter, a couple of notes with respect to the monolithic

plates are in order. First, the 100% Ti plates are not affected by the study since (a)

the two-phase and homogenized-layers FEM models are the same, (b) the properties

of TiB were varied during the optimization and the properties of Ti remained con-

stant. The 15% Ti-85% TiB plates did not yield test results and really have not been

studied in this dissertation due to lack of information on these specimens. Lastly,

monolithic 85% Ti-15% TiB specimens can only be studied after the parameter esti-

mation sequence has yielded acceptable results; that is, since a math model for the

monolithic two-phase FEMs was not constructed, their test results cannot be used

to predict material properties. However, the same estimation sequence could have

been used to estimate the properties of the monolithic specimens using more or less

the same steps as detailed in this chapter. The predicted material properties and

material models from the FGM parameter estimates will be applied to the monolithic

specimens and some of the results will be discussed in Chapter IX.
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IX. Study of the Impact Response of the FGM Plates

Many of the interesting features associated with the physics of the impact events

with FGMs have not yet been discussed. This fact is attributed to the need to

validate a FEM that can properly characterize the behavior of an actual metal-ceramic

FGM system. Having accomplished this, the FEM can be used to study the physics

of the impact events. The optimized FEM of the previous chapter has been shown to

be a good model of the actual Dynatup experiments. This optimized finite element

model will be used to study the interesting features of the impact events in this chapter.

This chapter will be wholly dedicated to studying a few of the behaviors associated

with the impact experiments and will demonstrate the utility of using these FEMs

in studying the impact response of metal-ceramic FGM plates. This is precisely the

chief objective of this work: characterizing the impact response of FGM plates. Four

aspects of the impact response of FGM plates will be studied in this chapter. First, the

contact interaction between the tup and plate will be addressed. Next, the loading

and unloading characteristics of the FGM plate will be studied through the strain

histories in both the experiment and the FEM. Next, the stress distributions in the

FGM plates will be studied using both the two-phase and homogenized-layers FEMs

as they develop throughout the impact event and the distributions will be compared

to those in monolithic specimens. Lastly, the effects of an impact from the tup slightly

away from the center of the plate will be presented.

9.1 Tup and Plate Interaction

The rebound of the tup after the maximum force has been applied to the plates

is a dynamic that was not addressed earlier in the dissertation. In this section, the

FEM will be used to better understand this interaction between the plate and tup. To

study this, the displacements and velocities of two nodes in the model will be checked.

The first node is at the very tip of the tup, precisely at the point of contact between

the tup and the plate. The second node was located at the center of the plate at the

bottom surface. This node in the plate was selected so that it was away from the tup
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tip to prevent looking at results that are directly coupled through the contact forces

in the FEM. Figure 9.1 shows the displacement and velocities of the two nodes. The

tup was initially separated with a small gap just above the plate impact site. Thus,

some of the displacement of the tup would account for the movement to close this gap,

introducing displacement bias in the results. To account for this, the displacement

was removed from the FEM output and the displacement for the tup was set to zero

at the instant contact between the tup and plate initiated.

The key question here is: How long does the tup actually remain in contact with

the plate specimen? In Figure 9.1 (a), the transverse displacements of the two nodes

are plotted from FGM plate test 9 (crosshead mass 13.06 kg, impact velocity 3.765

m/s, impact energy 92.56 J, FGM plate). The nodes show a negative displacement as

the tup bears downward and the plate flexes downward. (Recall the FEM coordinate

system; a negative displacement from the FEM implies displacement downward.) The

tup actually has a larger displacement downward than the plate. This would indicate

local indentation at the contact point is occurring (0.07 mm at its maximum); recall

that local dimpling of the specimens at the impact site on the FGM monolithic and

functionally graded specimens was observed experimentally. When both nodes return

to zero displacement, the nodes are at the same position as the instant contact was

initiated. The time between initiation of contact and returning to the zero displace-

ment is approximately 900 microseconds. This is about the same as the length of

the significant portions of the strain histories in the experiments. This indicates that

the tup and plate remained in contact over that entire period of time. After the

900 microsecond period of contact, the node remains very close to zero displacement

while the tup displaces upward at a nearly uniform rate. This is the point where

the two bodies separate and can clearly be viewed in Figure 9.1 (a). Recall that

gravity was not included in the FEMs. The uniform displacement rate upward is a

result of this truth; had gravity been included the tup would displace upward until

its kinetic energy was converted completely to gravitational potential energy. Gravity

was found to have virtually no effect on the results during the impact event itself
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and since secondary impacts did not occur it did not contribute much to the overall

result. Also note that the velocity at the impact site (the tup’s maximum kinetic

energy) was known and the small displacements from initiation of impact to maxi-

mum plate transverse deflection were sufficiently small that gravity did not contribute

significantly to the potential energy of the system.

The velocities of the two nodes can be viewed in Figure 9.1 (b). (Positive ve-

locities from the FEM indicate upward motion; negative velocities indicate downward

motion.) At the initiation of contact, the tup node shows sharp (accelerations) oscil-

lations at the beginning of the history. This is attributable to the abrupt shock to

the tup at the plate interface. The node on the bottom surface of the plate does not

undergo the dramatic accelerations that the tup node undergoes, but this is in part

because the node is separated from the tup by seven graded layers of metal-ceramic

mixtures and not directly at the interface. After about 100 microseconds, the veloc-

ity profiles for the nodes tend to converge together such that their profiles are nearly

identical. The nodal velocities are in concert with each other with some gradual os-

cillations that trend upward. The velocities are negative early in the impact event

but trend toward positive velocites later. This shows the plate (1) moving down-

ward at impact, (2) reaches some maximum displacement where the tup and plate

are basically at rest (only instantaneously), and (3) moves upward as the potential

energy stored in the plate converts to kinetic energy and pushes the tup upward. This

interaction is illustrated visually in Figure 9.2. As the plate moves upward, it pushes

the tup upward until the plate reaches some maximum velocity (approximately 900

microseconds). The instant the upward velocity reaches its maximum, the tup sepa-

rates (or ejects) from the plate. In the absence of gravity, the tup will not slow as it

moves upward. After the initial ejection, the tup accelerates upward initially but then

moves with more or less a “constant” velocity upward. It is true there are oscillations

(accelerations) present in the node here but these are merely associated with local

vibrations in the tup. The crosshead/tup assembly is at this point moving upward at

constant velocity.
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Figure 9.1: Transverse (a) displacement and (b) velocity pro-
files for the node at the tip of the tup (in contact with the plate)
and the node on the bottom surface of the FGM plate at the
center for the optimized FEM of test 9.

9.2 Loading and Unloading of the FGM Plates

The interaction between the tup and plate was characterized in the previous

section. It was shown that the tup and plate remain in contact together for virtually

the entire length of the significant strain histories in the plates. The impact between

the plates occurs over two significant periods of time: (1) the “loading” portion of the

impact that occurs between 1-2 in Figure 9.2; and (2) the “unloading” of the plate

that occurs between 2-3 in Figure 9.2. In this section, the loading-unloading regions

of the impacts will be studied.

Chapter VII showed that the analytical treatment of the FGM plates could

be simplified to a quasi-static analysis given the length of time over which the tup

applied loading to the FGM plates. However, this assumption does not imply that

the response of the FGM plate is not dynamic. In fact, there are many interesting

dynamic features that occur over the duration of the impact events.
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Figure 9.2: Four stages of the tup-plate interaction. Coordi-
nate systems for positive deflections (u), velocities(v), and ac-
celerations (a) are shown.
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Figure 9.3: A straight line was fit to the data in the loading
and unloading portions of the strain history curves to determine
the strain rates in each respective part of the curve. Shown are
the data from FGM plate test 9, strain gage 2: (a) experimental
and (b) optimized FEM with homogenized-layers MT-N model.

Strain rates are important to the discussion of nearly all impact events. Here the

strain rates in the plate from both the experiments and the FEMs will be compared

using the homogenized-layers FGM models from Chapter VIII. Figure 9.3 shows how

the strain rates in the experiments and FEMs is determined. A linear curve fit to

the data in the loading and unloading portions of the strain histories was applied.

The linear data fit was used to determine a general slope to the line through the

data. The slope of that line is the strain rate for that part of the curve. The strain

rate is not, in general, a constant through the duration of the impact events. For

each oscillation in the history, the strain rate is changing dynamically. However, the

linear fit to the data in the loading and unloading portions of the curve allow the

general trend to be assessed. The linear fit is merely a least squares fit to the data

(see [82], [69]) using a polynomial of degree one (a line). The linear fit was performed
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by an internal function in the commercial software Matlabr . The line fit was taken

so that the peak at maximum strain from each gage was not included in the strain

rate calculation. The duration of the experimental histories was slightly longer than

that of the FEMs (shown in Chapters VI and VIII) and so the time over which the

strain rates were assessed in the loading and unloading portions of the curves had

to be adjusted accordingly. The linear fit, in general, was taken between 50-350

microseconds for loading and 600-850 microseconds for unloading in the FEMs. The

linear fit, in general, was taken between 50-350 microseconds for loading and 600-1000

microseconds for unloading in the experiments. These windows had to be adjusted

slightly at times for the experimental data if the trendlines did not match the data in

instances where electrical disturbances strongly affected the measured strain histories.

Tables 9.1-9.4 show tabulated strain rates for the Dynatup impact tests and the

FEM impact tests for both loading and unloading at the three gage locations. Also

shown are the tup impact velocities for each of the tests for reference. In general, the

strain rates show a trend where increasing tup velocity results in increasing magnitude

of strain rate. This trend is not followed in all instances, but this can be attributed to

positioning of gages in the experiments that can have a profound effect on the strain

histories. Further, the FEM was used to match the experimental strain histories as

close as possible and accounted for this potential variation in gage placement. Note

that the magnitudes of strain rates for the most part are lower the farther away

the gages are from the center. This is due to the fact that the plates deform globally

downward in a “bowl-shaped” fashion (demonstrated in Figure 7.3 assuming a simply-

supported boundary condition at the fixture opening; see also Figure 9.2). The strains

are lower near the edges of the fixture’s circular opening and highest near the center

of the plate. This bowl-shaped deformation throughout the impact event causes the

strains in the plate to occur mostly in concert together. The strain histories at the
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Table 9.1: Summary of loading strain rates from
plate impact tests using Dynatup apparatus. Strain
rate is in units of strain/sec = (mm/mm)/sec.

Test Tup Velocity, Strain Rates, Loading
No. Description Actual (m/s) Gage 1 Gage 2 Gage 3

1 100% Ti, 0% TiB Mono 3.040 2.324 2.184 0.967
2 100% Ti, 0% TiB Mono 3.476 6.175 2.754 2.161
3 85% Ti, 15% TiB Mono 3.050 3.979 3.302 1.800
4 85% Ti, 15% TiB Mono 3.479 3.759 3.367 1.781
5 15% Ti, 85% TiB Mono 2.585 Failed Failed Failed
6 15% Ti, 85% TiB Mono 3.050 Failed Failed Failed
7 7-Layer Ti-TiB FGM 3.040 2.509 2.467 1.110
8 7-Layer Ti-TiB FGM 3.412 3.927 3.389 1.643
9 7-Layer Ti-TiB FGM 3.765 4.135 4.091 1.379
10 7-Layer Ti-TiB FGM 4.078 5.167 4.678 2.140

Table 9.2: Summary of loading strain rates from op-
timized finite element models with homogenized-layers
and Mori-Tanaka-needles material model. Strain rate
is in units of strain/sec = (mm/mm)/sec.

Test Tup Velocity, Strain Rates, Loading
No. Description Actual (m/s) Gage 1 Gage 2 Gage 3

1 100% Ti, 0% TiB Mono 3.040 4.295 2.374 1.162
2 100% Ti, 0% TiB Mono 3.476 6.738 2.821 2.032
3 85% Ti, 15% TiB Mono 3.050 4.035 4.055 1.640
4 85% Ti, 15% TiB Mono 3.479 4.964 3.756 2.038
5 15% Ti, 85% TiB Mono 2.585 Failed Failed Failed
6 15% Ti, 85% TiB Mono 3.050 Failed Failed Failed
7 7-Layer Ti-TiB FGM 3.040 4.099 3.152 1.272
8 7-Layer Ti-TiB FGM 3.412 4.850 3.726 2.077
9 7-Layer Ti-TiB FGM 3.765 5.527 4.261 1.724
10 7-Layer Ti-TiB FGM 4.078 5.852 4.507 2.508
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Table 9.3: Summary of unloading strain rates from
plate impact tests using Dynatup apparatus. Strain
rate is in units of strain/sec = (mm/mm)/sec.

Test Tup Velocity, Strain Rates, Unloading
No. Description Actual (m/s) Gage 1 Gage 2 Gage 3

1 100% Ti, 0% TiB Mono 3.040 -1.540 -2.111 -0.363
2 100% Ti, 0% TiB Mono 3.476 -4.463 -1.746 -1.589
3 85% Ti, 15% TiB Mono 3.050 -2.966 -2.393 -1.331
4 85% Ti, 15% TiB Mono 3.479 -3.207 -2.580 -1.350
5 15% Ti, 85% TiB Mono 2.585 Failed Failed Failed
6 15% Ti, 85% TiB Mono 3.050 Failed Failed Failed
7 7-Layer Ti-TiB FGM 3.040 -2.449 -2.074 -1.096
8 7-Layer Ti-TiB FGM 3.412 -3.522 -2.432 -1.723
9 7-Layer Ti-TiB FGM 3.765 -3.245 -3.599 -1.477
10 7-Layer Ti-TiB FGM 4.078 Failed Failed Failed

Table 9.4: Summary of unloading strain rates from
optimized finite element models with homogenized-
layers and Mori-Tanaka-needles material model.
Strain rate is in units of strain/sec = (mm/mm)/sec

.

Test Tup Velocity, Strain Rates, Unloading
No. Description Actual (m/s) Gage 1 Gage 2 Gage 3

1 100% Ti, 0% TiB Mono 3.040 -5.862 -3.283 -1.604
2 100% Ti, 0% TiB Mono 3.476 -8.847 -3.764 -2.682
3 85% Ti, 15% TiB Mono 3.050 -4.879 -4.904 -1.975
4 85% Ti, 15% TiB Mono 3.479 -5.498 -4.164 -2.231
5 15% Ti, 85% TiB Mono 2.585 Failed Failed Failed
6 15% Ti, 85% TiB Mono 3.050 Failed Failed Failed
7 7-Layer Ti-TiB FGM 3.040 -5.368 -4.119 -1.608
8 7-Layer Ti-TiB FGM 3.412 -6.006 -4.620 -2.548
9 7-Layer Ti-TiB FGM 3.765 -6.397 -4.906 -1.898
10 7-Layer Ti-TiB FGM 4.078 Failed Failed Failed
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gage locations all reach maximum values at the same time, and the strain magnitude

is dictated by the location of the gage with respect to the center of the plate. Thus,

gages farther away from the center reach a lower magnitude of maximum strain at the

same time instant as gages closer to the center reach a larger magnitude of maximum

strain. Since the strain rate is more or less the difference in strain divided by the

time period the difference is measured, it is easy to see how the rates near the circular

opening of the fixture would be less than those near the center of the plates (assuming

the simply-supported boundary condition around the circumference of the fixture’s

opening and global deformation as in Figure 9.2).

The maximum magnitude of strain rate for any of the impact tests is 8.847

(mm/mm)/sec in the unloading of the pure titanium plate in test 2, predicted by

the FEM. These rates of strain, as tabulated for these tests, are very low compared

to what would be experienced from a high-speed impact, such as occurring from a

projectile in space [142]. In applications such as these, the rates of strain can be in

excess of 103-105. Given rates as high as these, localized wave response and the effects

of rate-sensitive constitutive models need to be included [142]. The rates experienced

by the FGM plates here in these tests are low enough that the global effects dominate

the solution and the local wave effects are so dominated by the global response of the

structure that they are virtually indistinguishable.

Another interesting trend is that the magnitude of strain rate in the experiments

is greater in the loading of the plate and lower in the unloading of the plate. Just

the opposite is true with the FEMs. In the FEMs, the magnitude of strain rate is

greater in unloading than in loading. As mentioned, the effects of gravity were found

to not contribute to this response, and thus another physical characteristic of the tests

is causing this to occur. The strain rates with respect to the loading of the plates

experimentally and through the FEM show good correlation. During the loading of

the plate, there is a certain amount of “pulling” on the plate as the tup tries to push

the plate through the circular opening of the fixture. One can picture what might

occur if a thin piece of sheet metal were placed in the fixture in place of the thick
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specimen plate. The tup, on impact, would very likely push the sheet through the

bottom opening of the fixture and the sheet would be pulled right out of the fixture

through its large deformations. The thick plates undergo a similar deformation, but

the tup cannot push the plate through the opening and out of the fixture because the

plate is too thick and too strong for the tup to do so. However, the tup will try push

the specimen plate through the bottom circular opening in the fixture as much as

possible during the loading phase of the plate. During the unloading phase, the plate

is relaxing as it and the tup rebound from the impact and the potential energy stored

in the plate is reconverted to kinetic energy. As the plate relaxes, there is likely a large

amount of friction that may be resisting the specimen plates from returning to their

original configuration, especially near the chamfered edges of the fixture’s circular

openings. This resistance may be slowing the response during unloading in the actual

fixture and can account for the fact it returns very slowly back to zero strain. In

the FEM, this effect may not be as pronounced given the frictionless contact model

used in the FEMs (see Appendix C for details). Also, the friction may still be just as

prevalent in the fixture during the loading phase but the friction forces may not be

as pronounced as the plate is “pulled” out of the fixture during loading as they are

as the plate “pushes” itself back to its original configuration.

9.3 Stresses in the FGM Plates

The discussion will now switch gears slightly to look at the stress distribution

through the FGM plates over the course of the impact events. The stresses in the two-

phase and homogenized-layers FGMs will be studied under the conditions of FGM

plate test 9 (crosshead mass 13.06 kg, impact velocity 3.765 m/s, impact energy

92.56 J, FGM plate). Also included in the study is a homogenized-layers model

of one of the 85% Ti-15% TiB monolithic plates for comparison. The homogenized-

layers monolithic specimen provides a baseline from which the results from the graded

composites can be compared.
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Figures 9.4-9.12 provide von Mises stress contours of the homogenized-layers

FGM (Figures 9.4-9.6) , the two-phase FEM (Figures 9.7-9.9), and the monolithic

FGM (Figures 9.10-9.12). The von Mises stress σe is given by the following relation-

ship [31]:

σe =
1√
2

[
(σxx − σyy)

2 + (σyy − σzz)
2 (σzz − σxx)

2

+6
(
σ2

xy + σ2
yz + σ2

xz

)]1/2
(9.1)

This stress is termed an equivalent stress because it generates a scalar stress that

encompasses the contributions of the entire stress tensor, both normal and shear

components. The von Mises stress is non-negative due to its squared terms in (9.1).

Before discussing some of the interesting features due to the impact of the

FGM specimens, some explanation of the figures is in order. Figures 9.4-9.6 will be

presented first (the homogenized-layers Ti-TiB FGM) and the remaining six Figures

9.7-9.12 follow suit for their respective FGM models. Figure 9.4 shows a top view

of the von Mises stress contours during the response of the FGM at six snapshots in

time. The first snapshot, t = 0, merely shows the finite element model of the plate with

no contours for reference purposes. The next five snapshots are taken at five different

equally spaced intervals so the reader can get a feel for the stresses developing in

the plate as the tup interacts with the plates. Figure 9.5 shows the von Mises stress

contours at four snapshots in time with a section cut through the middle of the plate,

slightly different from the first figure. The snapshots in this figure include a reference

snapshot at t = 0, one at t = 250 microseconds, one at t = 524 microseconds, and

one at t = 1000 microseconds. The snapshot at t = 524 microseconds represents the

time at which the center deflection of the FGM plate was at a maximum. Figure 9.6

shows the same stress contours at the same snapshots in time, however the section cut

through the middle of the plate is now made at a 45◦ angle through the center. The

section cuts give good representations of how the plate behaves near the corners where

the fixture fastener screws are farthest from the circular opening in the plate fixture.
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A simulation of an 85% Ti-15% TiB monolithic plate under the impact conditions of

experimental test 9 was run for comparison of the FGM results to a homogenized,

isotropic plate. The von Mises stress distributions for the monolithic plates are shown

in Figures 9.10-9.12.

The von Mises stress contours were all plotted on the same scale in ABAQUS.

This was done so that a one-to-one comparison of the stress distributions could be

made. As we study the contours, the distribution of stress will be the focus, and

not the magnitudes of the stresses themselves. There are a couple of reasons for this.

First, with the exception of the monolithic plate, the FGM finite element models have

many elements that are bound to other elements with mismatching material proper-

ties. The stress contours are averaged across the elements for smooth transitions in

plotting, but the stress state at mismatching material boundaries can be much more

complex. Secondly, the stresses at the impact site on the plate are very high due

to a force concentrated over a very small area. The magnitudes of these stresses in

that local area can be sufficiently high that the elastic constitutive model applied

throughout the plate is no longer valid (for instance, localized plasticity or crushing

at or near the impact site may be occurring). Without better material data for the

Ti-TiB specimens, these behaviors cannot be captured without an appropriate consti-

tutive model. Finally, the monolithic plate behaves slightly different than the FGM

plates with a slightly different response (owing to the fact that it is homogeneous in

composition where the FGM has more or less an unbalanced material configuration

through the thickness). It is not the goal to compare the magnitudes of stresses be-

tween the FGM and this plate since their composition and constitutive models are

not the same. Note that the maximum deflection in the monolithic plate does not

occur at 524 microseconds, but this snapshot was used in the plots for consistency

purposes.

First, the stress contours in the full plate views in Figures 9.4, 9.7, 9.10 will be

interpreted. Recall that for the FGM, the maximum displacement in test 9 occurred at

524 microseconds and the plate and tup separate around 900 microseconds. Between
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Figure 9.4: Top view of homogenized-layers FGM plate (plate
impact test 9) subject to stresses at six snapshots in time. Con-
tours of von Mises stress, in Pascals, are plotted.
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Figure 9.5: Top view with section cut through middle of
homogenized-layers FGM plate (plate impact test 9) subject to
stresses at four snapshots in time. Contours of von Mises stress,
in Pascals, are plotted.
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Figure 9.6: Top view with 45◦ section cut through middle of
homogenized-layers FGM plate (plate impact test 9) subject to
stresses at four snapshots in time. Contours of von Mises stress,
in Pascals, are plotted.
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Figure 9.7: Top view of two-phase FGM plate (plate impact
test 9) subject to stresses at six snapshots in time. Contours of
von Mises stress, in Pascals, are plotted.
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Figure 9.8: Top view with section cut through middle of two-
phase FGM plate (plate impact test 9) subject to stresses at four
snapshots in time. Contours of von Mises stress, in Pascals, are
plotted.
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Figure 9.9: Top view with 45◦ section cut through middle of
two-phase FGM plate (plate impact test 9) subject to stresses at
four snapshots in time. Contours of von Mises stress, in Pascals,
are plotted.
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Figure 9.10: Top view of homogenized-layers 85% Ti-15%
TiB monolithic (comparable to plate impact test 9) subject to
stresses at six snapshots in time. Contours of von Mises stress,
in Pascals, are plotted.
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Figure 9.11: Top view with section cut through middle of
homogenized-layers 85% Ti-15% TiB monolithic (comparable to
plate impact test 9) subject to stresses at four snapshots in time.
Contours of von Mises stress, in Pascals, are plotted.
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Figure 9.12: Top view with 45◦ section cut through middle
of homogenized-layers 85% Ti-15% TiB monolithic (comparable
to plate impact test 9) subject to stresses at four snapshots in
time. Contours of von Mises stress, in Pascals, are plotted.
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0-524 microseconds, the tup induces a target-bullseye stress distribution on the top

surface that carries through to the bottom surface. The maximum stresses are at the

center and decrease as the radial distance from the center increases. Toward the outer

edges of the plate, the stress distribution changes from the target-bullseye pattern to

another pattern that is more square-shaped. With a geometrically circular plate, the

target-bullseye pattern would continue out to the boundary. The plate studied here

is square and thus the pattern changes from the target pattern to one that reflects

the square geometry and additionally the restraints on the plate imposed by the plate

fixture. This is especially noticeable in the plate corners where the stress increases

locally at these points. This is due to a leveraging effect with the square plate against

the fixture during the impact event where the corners come into contact with the

top plate component of the plate fixture. Lastly, at time t = 1000 microseconds,

the tup and plate have separated for some time and the only stresses left are due to

minor oscillations that occur. There is no discernable pattern to these low-magnitude

stresses that occur as waves from the impact merely propagate throughout the plate

after the impact event. An important point here is also that the two-phase model

shows many of these same patterns, but the pattern is somewhat distorted due to the

mis-matching of material properties throughout the element mesh that distorts the

stress state across the elements. This is a behavior that we should expect from a FGM

(or any other such material) that exhibits two-phase distributions of constituents.

Next, the section cuts through the plates in Figures 9.5, 9.6, 9.8, 9.9, 9.11,

and 9.12 are explained. In the monolithic specimens (Figures 9.11, 9.12), the von

Mises stress distributions exhibit nearly symmetric distributions where the von Mises

stresses for a line normal to the plate surface at a point through the thickness have

nearly identical stresses on the top and bottom surfaces with a variation through the

thickness owing to both the shear components in the plate and the primarily tensile

stresses on the bottom surface transitioning to primarily compressive stresses on the

top surface. This is the behavior that should be expected for a homogeneous plate

of uniform composition subject to bending. On the other hand, the FGM plates
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in Figures 9.5 and 9.6 do not exhibit this behavior. In fact, the stresses compared

at a the same position through the thickness show a shape that is not necessarily

symmetric and is somewhat jagged at the interface of each material layer and the

magnitude of the von Mises stresses on the top surface are not the same as that

toward the bottom surface. This is expected and is consistent with composite plate

theory where the strains through the thickness are continuous (due to the assumption

the layers are perfectly bonded) but the stresses are not necessarily continuous if the

constitutive model changes. This same pattern and observation can be seen in the

two-phase model although the symmetric shape of the contours is highly distorted

with some localized patches of high-intensity stress surrounded by patches of low-

intensity stresses (Figures 9.8, 9.9. Lastly, the highest intensity of stresses are at and

very near the position of the impact site. As stated earlier, the constitutive behavior

of the FGM constituents and mixtures must be very well understood to effectively

model the behavior and response of the plates at those positions.

Before concluding this section, a note on the transverse shear in the plates is in

order. Figure 9.13 shows the distribution of shear stress through the thickness of each

of the three plate models at the time of maximum center deflection of the FGM plates.

Taking the 15 through-the-thickness nodes at the center of the plane cross-sections

in Figure 9.13, the transverse shear distributions are plotted in Figures 9.14-9.16 for

three different snapshots in time. Note that the shear stress plotted is not von Mises

equivalent stress, but is the actual shear stress acting directly on the plane of the

cross-sectional cut (σ13 in ABAQUS, corresponding to σxz in the Cartesian coordinate

system of the model). The section cut is taken 1.0 cm away from the center of the

plate so that the shear stresses from the concentrated load on the tup do not distort

the distributions. In the monolithic plate, a very clearly parabolic stress distribution

is evident through the thickness of the plate as is expected under bending of thick

plates (much the same as in beam theory). In the FGM plates, a parabolic distribution

of stress is also evident however the distribution is clearly affected by the changing

material properties in each layer. The distribution tends to have sharp discontinuities

246



Figure 9.13: Top view with section cut through middle of
homogenized-layers 85% Ti-15% TiB monolithic, homogenized-
layers Ti-TiB FGM, and two-phase Ti-TiB FGM (comparable
to plate impact test 9) subject to transverse shear stresses at
snapshot of maximum deflection. Section cut taken 1.0 cm from
the center plane of plate. Contours of transverse shear stress on
plane in section cut, in Pascals, are plotted.
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Figure 9.14: Transverse shear distribution through thickness
of the 85% Ti-15% TiB monolithic homogenized-layers plate
(MT-Needles material model) at three snapshots in time un-
der conditions of impact test 9. Distribution is taken from 15
nodes through thickness of the plate at center of cross-section
in Figure 9.13.

Figure 9.15: Transverse shear distribution through thickness
of the FGM homogenized layers plate (MT-Needles material
model) at three snapshots in time under conditions of impact
test 9. Distribution is taken from 15 nodes through thickness of
the plate at center of cross-section in Figure 9.13.
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Figure 9.16: Transverse shear distribution through thickness
of the FGM two-phase plate at three snapshots in time under
conditions of impact test 9. Distribution is taken from 15 nodes
through thickness of the plate at center of cross-section in Figure
9.13.

at each of the material interfaces through the seven individual layers. A somewhat

similar distribution can be seen in the two-phase FGM model, but once again the

distribution is heavily distorted due to the random mixture of elements of individual

Ti and TiB constituents. Recall in the analytical treatment of the FGM plates in

Chapter VII, the transverse shear stress through the idealized circular plate was

assumed to be constant for a given radial coordinate and independent of the thickness

coordinate of the plate (FST assumption). This assumption increased the accuracy of

the analytical model but simplified the equations from requiring a higher-order shear

deformable theory where the transverse shear is dependent on both the radial and

thickness coordinates of the plate. However, the transverse shear distributions from

the FEM indicate that incorporating a higher-order shear deformable theory when

analytically studying the FGM plates would be highly justified and appropriate.
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9.4 Effects of Non-Central Impact Load

The last topic in the impact characterization involves the effects of a non-

centered impact load on the FGM plates. The Dynatup tests were assumed to deliver

an impact perfectly centered on the plate specimen for each test. For the most part,

this was observed to be a pretty good assumption. Each specimen plate was carefully

marked and positioned in the fixture to make sure that the Dynatup would impact

the center of each plate (see Chapter V). However, as mentioned in Chapter V, the

Dynatup crosshead had a small amount of play due to fittings that have loosened

over use. Most of the looseness in the apparatus was primarily between the crosshead

and the guide rails and little could be done to correct the problem. Inspection of the

plates after the tests showed that the impacts were very close to the center point of

the plate, but a few tests showed impacts sites slightly perturbed away from the center

point. The FEM simulations conducted up to now all involved a perfectly centered

impact. Here the strain histories at the strain gage locations will be compared with

those at the same locations assuming the tup model in the FEM is positioned slightly

off-center.

Continuing with the optimized homogenized-layers MT-N model of FGM plate

test 9, the tup was re-positioned in the FEM to impact at two different locations

off-of-center as shown in Figure 9.17. The tup was moved to two positions at 0.898

cm along the 45◦ axis of the plate (0.898 cm = [(0.635 cm)2 + (0.635 cm)2]1/2).

This distance was arbitrarily chosen for illustration purposes. The influence of the

perturbed location of the tup impact site on strain gages 2 and 3 are shown in Figure

9.18. The histories from the experiment, the nominal FEM results from a central

impact, and the histories from the two perturbed impact sites are all included for

comparison.

It can be seen in Figure 9.18 that the greatest effect in the strain histories

occurred as the tup was placed at impact site 1 (Figure 9.17. The strain histories

changed very little when the tup impacted the plate at impact site 2. (Note that the
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Figure 9.17: Specimen plate with gages and reference posi-
tions annotated. Impact sites 1 & 2 are 0.898 cm from center.

Figure 9.18: Test 9 strain histories & FEM comparisons with
off-centered tup impact sites per Figure 9.17 using the Mori-
Tanaka Needles model: a) strain gage 2, b) strain gage 3.
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same nodes were used in the FEM for all three FEM strain histories). One might

have the initial reaction that the strain histories at the two locations should change

by roughly the same magnitude, meaning the strains measured from an impact at

site 2 would be less than the nominal strains from a central impact while the strains

measured from an impact at site 1 would be greater by a roughly equal magnitude.

This could perhaps be the case if the dynamic load was spread over a larger area, but

in fact the tup acts almost as a concentrated load to the plate. It is well-known (and

was discussed in Chapter VII), that a concentrated load introduces a stress state to

the plate that is significantly higher near the point of application of the load than

slightly away from it. In theory, it was shown that these stresses were unbounded, but

in physical reality these stresses are not unbounded (otherwise a plate would always

fail under a concentrated load regardless of the magnitude). While the stresses are not

unbounded, they are significantly higher near the point of application and this was

evident in the contour stress plots of the previous section. This sharp increase in stress

state is undoubtedly causing the sharp increase in associated strain measurement when

measured from the impact at site 1. At impact site 2, the point of impact is sufficiently

far away from the strain gage locations that the localized increase in stress/strain does

not influence the measurements to the same degree.

9.5 Closing Remarks

In this chapter, four specific areas of the impact response of the plates were

studied. The first was the plate and tup interaction. It was found that the tup re-

mained in contact with the plate specimens throughout the entire impact event. The

next area was the strain rate effects of the plate during the loading and unloading

of the plate. During the loading of the plate, the FEM and experiment correlated

fairly well; in the unloading of the plate, the FEM and experiment exhibit different

behaviors that can be accounted for due to some modeling assumptions in the FEM

that do not reflect some of the actual plate/fixture interactions. The stress distribu-

tions in the FGM plates were studied and compared to those from a homogeneous
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plate. Finally, the effects of non-central impact loads on the plates were demonstrated

through simulation. It was found that if the impact site is off-center such that the

impact load is applied closer to the gages, the magnitude of the measured strains can

increase significantly whereas an off-center impact a small distance farther away from

the gages has a lesser effect.

These four areas are merely a sample of the physics that could be studied using

the concepts discussed throughout this dissertation. The key point in using the method

discussed in this dissertation is that virtually any FGM system can be studied provided

an accurate FEM can be developed. Only limited experimental data can be collected

over any impact event. If the computer simulations match the experimental data

reasonably well, the simulations can be used to extrapolate other physics within the

model. This is very important because the physics behind FGM impacts are not

easily modeled with analytical theory, especially as the velocity and energy behind

the impacts increases. While only four characteristics were studied here, volumes of

work could be extrapolated from the finite element models to study the effects of

FGM impacts at the global and local levels in the FGM plates. Further, given strong

confidence in the modeling of the particular FGM system here, it is possible to study

the same FGM system under a wide variety of geometries and configurations under

similar impact loading conditions (i.e., impact velocities and energies). This method

for characterizing the impact response of FGM plates subject to impact loading is thus

an invaluable contribution to the study of these materials and is one that has excellent

potential for use in a large number of FGM applications.
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X. Conclusions

This research work represents a first attempt at characterizing the impact re-

sponse of FGM plates; an area relatively unexplored by research engineers and

scientists to date. The response of FGM plates subject to impact is of interest should

FGMs be used as a thermal protection system on an aerospace platform. FGM plates

used in such an application must be able to withstand a high-energy impact from

a foreign object to avoid deterioration of strength of any substructure the FGM is

intended to protect.

This dissertation provides a strong foundation from which research in the impact

response of FGM structures can build. Since almost no treatment of this subject has

been available before this work, it was necessary to simplify the FGM impact problem

to studying the impact response of FGM plates in low-velocity regimes without a

thermal environment other than that of room-temperature. The overall goal of this

study was to provide a unique method by which the impact response of functionally

graded plates could be characterized for low-velocity, low- to medium-energy impact

loads. Additionally, adequate material models for the anisotropic, non-homogeneous

FGM had to be determined to properly study the physics of the local and global response

of the structure subject to an impulsive load of large magnitude. The objectives of

this research to meet these overall goals were to:

1. Design and conduct impact experiments on metal-ceramic FGM plates to collect

strain histories at various locations on the plate over the duration of the impact

event.

2. Construct a finite element simulation of the impact experiment that is suffi-

ciently sophisticated to capture the dynamic effects of an impact load while at

the same time is easily replicated by scientists and engineers in practice.

3. Correlate the results from the experiments and finite element models to available

analytical theory while drawing conclusions regarding the validity of analytical

techniques available in the literature for future research.
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4. Refine the FGM material models to more effectively simulate the experiment

and enhance the accuracy of the results from which more detailed studies of the

behavior of FGMs under dynamic loading can be made.

5. Provide analysis of the impact response of the FGM plates and make recommen-

dations for engineers and scientists to improve performance and suitability for

applications where resistance of impact loads are required.

Each of these objectives was met in this research work and each represents a major

contribution to the emerging field of functionally graded composites.

In this final chapter, the research performed in this dissertation is summarized

with key conclusions and recommendations presented. The details of the work per-

formed and the key conclusion from each chapter are listed to give a final overview of

the entire study performed. Next, the most important contributions of this work are

documented to demonstrate the relevance of the research to future investigators. The

discussion continues with some concluding remarks provided assessing the strengths

and shortfalls of the results, some comments with respect to some efforts that were

not fruitful in this research, and also recommendations for future studies.

10.1 Summary of Research Conducted

The following is a recap of the research presented in this dissertation. Key

conclusions from each chapter are highlighted in italics, as appropriate.

• Definition of the problem of interest, namely, determining a reliable method to

characterize the impact response of an FGM plate under low-velocity, low- to

medium-energy impact loading as a precursor to evaluating the response of such

a plate under high-energy impact loads such as one might experience as thermal

protection on a space-access vehicle (Chapter I).

• Demonstration, through a comprehensive literature review with respect to the

current state of the art in FGM research, that a study of the impact response
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of FGMs has been given little treatment to date (Chapter II). Almost no exper-

imental data of any kind has been collected with FGM specimens; thus a need

exists to demonstrate static and dynamic concepts in FGM behavior beyond sim-

ulation only.

• A review of relevant homogeneous and composite plate theory applicable to this

research was presented (Chapter III).

• Selection of a model metal-ceramic FGM system, Ti-TiB, to study in a series of

plate impact experiments (Chapter IV). A literature review of the FGM system

was conducted to understand characteristics of the material prior to conducting

impact tests in order to aid in interpretation of the results throughout the

research. The metal-ceramic Ti-TiB FGM system chosen was convenient for

study here due to its availability, however, it is not likely that such an FGM

system would actually be used in a thermal protection system on a space-access

vehicle.

• An experiment was designed to collect strain histories in monolithic and func-

tionally graded plates over the duration of a low-velocity, low- to medium-energy

impact event (Chapter V). Ten impact tests were conducted total, eight of which

were successful tests with strain histories in the plate collected. The key finding

was that strain histories could be collected with a high degree of reliability, and

the primary limitation in conducting a successful test rested solely on plate sur-

vivability over the test. The collection of the strain histories for the FGM plates

provide invaluable data from which the impact response of FGMs demonstrated

in simulation can be verified. This phase of the research met Objective 1.

• Finite element models of the impact experiments were constructed to study

the behavior of the monolithic and FGM plates under impact loading. Two

separate material models were used to study the response, namely the two-phase

material model and the homogenized-layers material model (Chapter VI). Both

the two-phase and homogenized-layers FEMs were shown to capture the response
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of the plates under impact loading relatively well using only published material

properties. This phase of the research met Objective 2.

• Analytical plate theory presented in Chapter III was extended to study the

plate experiments specifically. It was shown that the load applied from the im-

pact tests occurred over a sufficiently long period of time that quasi-static loading

assumptions could be applied to estimate the maximum deflection of the plate

during the impact event. Further, results from the FEM and experiments showed

a strong correlation with analytical predictions of the maximum deformation of

the plate for a simply-supported circular plate under the assumption of axisym-

metric loading (Chapter VII). This analytical model of the plate impact tests

was a necessary component of the parameter estimation sequence used to refine

the local material models for the FGMs so the physics of the impact events

could be effectively captured.

• A parameter estimation sequence to effectively estimate the material proper-

ties of the FGM plates was formulated and demonstrated (Chapter VIII). The

sequence was designed to enhance the accuracy of the finite element models.

The resulting estimates for material properties in the FGM from implementa-

tion of the parameter estimation sequence were shown to match well with pub-

lished material properties for the Ti-TiB system. The material properties in the

homogenized-layers FEM were modified accordingly and the strain histories from

the resulting optimized model showed very good correlation with those from the

experiments. This phase of the research met Objectives 3 and 4.

• Characterization of the behavior of the impact experiments using the optimized

FEM to study the physics of the plate impacts and behaviors during impact

not obvious from the experimental data (Chapter IX). The optimized FEMs

showed the impact response of the FGM plates in the experiments could be cor-

rectly characterized and that the modeling of FGM plates could be extended to

other static and dynamic FGM plate applications subject to small strains and

deformations. This phase of the research met Objective 5.
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10.2 Key Contributions

This work has provided five invaluable contributions to the study of functionally

graded composites:

• Fundamental understanding of the physics associated with FGM Response based

on combination of experimental, computational, and analytical work that can

be used as foundation for others studying these advanced composites for various

applications.

• Developed and demonstrated a novel framework for studying the impact re-

sponse of FGMs, valid and extendable in a wide variety of impact applications.

• Design of an experiment where strain histories in functionally graded plates over

the duration of a low-velocity, low- to medium-energy impact could be obtained

with a high degree of reliability.

• A significant amount of experimental data from the low-velocity, low- to medium-

energy impact tests conducted with monolithic and FGM plate specimens. The

cost and availability of functionally graded materials are such that experimen-

tal data of any kind is not readily available in the literature. In this sense,

any credible experimental data is extremely useful to research scientists and

engineers.

• Demonstration of two distinct modeling techniques that can be applied in com-

mercial FEM software to model the global impact response of functionally

graded composites. One modeling technique assumes graded layers are indi-

vidually isotropic with material properties that are a function of the volume

fractions of the constituents. The other model assumes a two-phase random

distribution of the base constituents constrained by the local volume fraction

ratios.

• Development of a novel parameter estimation sequence that effectively estimates

the material properties of the FGM plates formulated to tie together the results
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from experimental data, finite element simulations, and analytical theory of

plate behavior. The results of the sequence were shown to match well with ma-

terial data from other sources (for Ti-TiB FGMs) and the strain histories from

the FEM matched very well with the analagous experimental strain histories

from the impact tests.

• Demonstration of the FEM capabilities in characterizing the impact response of

FGM plates under low-velocity, low- to medium-energy impact events.

Each of these contributions represents a significant addition to the current state-

of-the-art in functionally graded material analysis. The work also creates a solid foun-

dation from which higher energy impact studies can be performed using the chosen

material system or other available FGM systems.

10.3 General Discussion

This chapter concludes with discussion on some points of interest with respect

to the work performed that were not included in the earlier documentation.

First, this work represents a major contribution to the knowledge and under-

standing of FGM systems used in structural members. Almost no experimental data

has been available until this time with respect to FGMs. The FGM plate strain his-

tories were collected using a very harsh impact event. Analytical comparisons to the

experimental data were shown to be valid under assumptions of elastic quasi-static

theory, and computer simulations that incorporate dynamic effects matched the data

fairly well. Such comparisons give engineers and scientists baseline results that can

be used in their FGM studies. Before this work, nearly all FGM studies were based

solely on simulation and analytical theory with no real-world data to substantiate

claims. Further, the confidence gained in the modeling and understanding of FGM

systems provide a solid foundation from which other applications of FGM systems

can be reasonably and confidently studied.
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It was known prior to testing that the Ti-TiB material system was a brittle

system at high volume fractions of TiB based on the literature review presented in

Chapter IV. However, it was not expected that the material would be highly brittle

at even low volume fractions of TiB (for instance, 85% Ti - 15% TiB monolithic).

A dynamic flexure test was designed as part of this research to capture plastic rate-

dependent features for the system at different mixtures of Ti-TiB. This test was found

to capture very well the strain-rate plasticity effects present in some ductile metals,

but the Ti-TiB monolithic specimens exhibited virtually no plasticity before failing

in the flexure tests. This elastic-to-failure brittle behavior was exhibited in the 15%

Ti - 85% TiB monolithic plate tests 5 and 6 in this work and was found to occur

during one of the FGM plate tests (test 10). This brittle behavior is almost certainly

associated with the powder-metallurgy sintering process used to construct the FGMs

and monolithic specimens. The powders of Ti are combined with TiB2 powders at

the outset and are fused by bringing the powders in the plate die to near the melting

point of Ti. The ability of the bond between powders to withstand dynamic loads

is highly suspect and would account for the brittle behavior in even high volume

fractions of Ti. The goal of this work was not to conduct a material study on the Ti-

TiB FGMs, but rather to use the FGMs as a metal-ceramic FGM system from which

some experimental data could be collected for verification purposes. In this respect,

the FGM and monolithic plate specimens performed their function adequately.

One proposed application for FGMs is fusion of thermal protection into load-

bearing structure on a space-access vehicle. The Ti-TiB system would definitely not

be a good candidate for this application given its brittle tendencies. Again, the Ti-TiB

FGM system was merely a metal-ceramic system that was convenient to study due to

its availability. Another FGM system is currently being studied at the University of

Illinois Urbana-Champaign under a joint effort with the Structural Sciences Center

of the Air Force Research Laboratory. Here, a titanium-zirconia (ZrO2) system is

being studied as a model FGM system. Zirconia is a ceramic material that has

some favorable properties at high temperatures, namely low thermal conductivity,
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plastic material response, and high toughness that can be very favorable to a thermal

protection system undergoing impact loads (see [110], [66], [67], [68]). It was originally

intended to conduct impact experiments with this FGM system but specimens could

not be made available when this research work began. There are most certainly other

FGM systems that could be constructed that would perform better than the Ti-TiB

system, but as pointed out earlier, availability and cost are serious limitations when

studying metal-ceramic FGMs. As the technology to manufacture them improves

and the availability and cost decrease, it is likely that more suitable FGMs will be

developed for a wide range of applications.

It is believed, but has not been verified, that failure of the cohesive bond between

sintered powders in the FGM system is the critical failure mode. Had more material

data been available for the system, a failure criteria could have been included in the

ABAQUS FEMs that would account for cohesive bonds between elements. This would

be a very nice feature to demonstrate in future finite element analyses (especially in

brittle material systems), but this was not studied here.

The impact experiments designed and conducted were a great success overall.

Data from the impact tests could be reliably collected, and failure of the specimens

was generally the only limitation in data collection. The 15% Ti-85% TiB monolithic

specimens failed immediately in their individual impact tests, but the FGMs did not

fail (except midway through test 10) despite the higher velocities and energy levels and

the fact that the top layer of the FGMs was in fact this TiB-rich composition. Clearly

more needs to be understood about the Ti-TiB mixtures before more conclusions can

be drawn.

Had more specimens been available, it is likely that a failure model for the

Ti-TiB composites could have been generated. This would have been a major contri-

bution that would have enhanced the effectiveness of the finite element model. The

FGM plate test 10 was the only test that provided any insight into the failure of the

plates. The strains measured in plate test 10 were only slightly higher than that mea-
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sured in test 9. Whether or not the strain in plate 10 at failure is a good measure of

the maximum deformation the FGM system can undergo is difficult to say. However,

very few conclusions of any kind with respect to the tests where plates failed were

made throughout this work.

The FEMs of the FGMs and plate impact experiments matched data very well

and were constructed to use features of ABAQUS that were not necessarily unique

to ABAQUS. That is, conceivably the plate impact problem could be studied using

any number of commercial codes. The most complicated aspect of the FEMs was

the nonlinear contact formulation. The contact interactions in the model seemed to

work well overall, but as it was noted there were instances were improvements could

have been made specifically to the experiments. There are obvious advantages and

disadvantages to adding to the complexity of the specific model of the experiments. In

this case, the goal was to keep the models as simple as possible in order to draw more

broad conclusions and make the study of FGMs readily available to a wide variety

of engineers and designers. In that respect, the objective was met very well. On the

other hand, keeping the model simpler may have sacrificed understanding some of

behaviors specific to the experiments. Unfortunately, the lack of material data for the

Ti-TiB system made such a task unreasonable over the course of this work.

Lastly, one of the original intentions for conducting an impact study was to

look closely at the wave propagation in the FGM plates. Limitations in the Dynatup

prevented higher velocity impacts that might have been more oriented to the study of

wave motion in the plates. The problem is interesting for an isotropic, homogeneous

material, but is even more interesting for a multi-layered material where reflection,

refraction, and transmission of waves locally becomes very important and more dif-

ficult to track apart from sophisticated numerical simulations. In these tests, the

global deformations so dominated the response that the wave motion became almost

insignificant in comparison to the global structural dynamic. This work has nonethe-

less provided a solid foundation in low-velocity impact studies from which higher

velocity, higher energy impact studies can be conducted in future work.
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Appendix A. Strain Gage Instrumentation

This appendix discusses some broad details associated with the instrumentation

used to collect strain histories from the FGM plate specimens over the course

of the impact experiments (Chapter V). The key components of the instrumentation

system were the strain gages, the signal conditioner, and the data acquisition unit.

The body of literature available concerning instrumentation is large; the majority of

discussion in this section is summarized from Beckwith et al. [13]. The concepts used

in this appendix can be referenced when studying the raw voltage histories from each

experiment contained in Appendix B

A.1 Strain Gages

Strain gages rely on the phenomenon that the electrical resistance of some ma-

terials will change due to an applied mechanical stress and subsequent strain. For

instance, a wire of finite length and diameter will exhibit a reduction in electrical resis-

tance when the length is increased and the diameter is decreased (due to stretching).

Foil strain gages (very thin flat wire with thin polymer backing) with linear pattern

for strain measurements were used in the experiments performed in this work. An

example strain gage is shown in Figure A.1. For strain gages placed on the surface

of a specimen, the matrix backing material serves as an interface with the specimen

transferring the deformation of the specimen to the grid material. The backing mate-

rial provides a mechanical couple between the strain in the specimen and the strain in

the gage material and ensures an accurate transfer of the strain in the test specimen

to the applied strain of the gage material [135]. Furthermore, an appropriate backing

material ensures a bond which electrically isolates the gage material from the test

specimen. This allows the complete electrical signal generated during the straining of

the gage material to be transmitted to the data collector.
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Figure A.1: Vishay 125AC series strain gage used in impact
tests for collecting strain histories [127].

The gage strain sensitivity, which is also referred to as the gage factor (GF ), is

a dimensionless relationship expressed as

GF =
∆R

R

L

∆L
(A.1)

R is the resistance in the gage, ∆R is the change in resistance, L is the initial length of

the foil wire gage section, and ∆L is the change in length of the foil wire gage section.

The gage factor is usually pre-determined by the manufacturer and is reported with

other gage specifications. These gage specifications are important when calculating

the measured strain on each specimen. The procedure for doing so is presented in a

later section.

A.2 Signal Conditioner

The strain gages, once installed on the plate specimens, were wired into a signal

conditioning unit. The purpose of the signal conditioning unit is to convert the resis-

tance change (due to plate straining) in the strain gages into a meaningful quantity

that can easily be measured. The signal conditioner used to perform this function in

the impact experiments essentially consists of two main parts: (a) the Wheatstone
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bridge circuit, and (b) a direct current (DC) differential amplifier. Each component

will be discussed briefly here.

The first component, the Wheatstone bridge circuit, is a common resistive bridge

circuit which provides a means for accurately detecting and measuring small changes

in resistance. Figure A.2 shows a basic strain gage Wheatstone bridge circuit. R1,

R2, R3, and R4 are individual resistors arranged in a parallel circuit between nodes

A and C. ei, a DC input voltage, is input between these nodes and a voltage output,

eo, is then measured across nodes B and D. The individual values of i represent the

current flowing through each resistor in the Wheatstone Bridge. The Wheatstone

bridge circuit is used to measure changes in resistance by either (1) balancing the

bridge by making known adjustments in one or more of the bridge arms until the

voltage across the meter is equal to zero or (2) measuring the magnitude of unbalance

from the meter connected to nodes B and D. In the example of the strain gages

used in these experiments, each gage is connected to a separate Wheatstone bridge

by wiring the strain gage to serve as R1 in the circuit. Note that when negligible

current flows through the meter attached to B and D, the bridge is simply a pair

of voltage-dividing circuits (ABC and ADC) with output taken at the midpoints of

the two voltage dividers. Further, the offset voltages of the two dividers cancel such

that any small change in resistance between the two arms is detected by the attached

meter. A balanced bridge circuit (voltage reading across the meter is zero) occurs

when the following holds true (as shown in Figure A.2):

R1

R2

=
R3

R4

(A.2)

The particular bridge arrangement for the impact test strain gages is termed a quarter

bridge arrangement, where the designation indicates the number of active arms in the

bridge circuit (each of the four segments with attached resistance is termed an arm of

the bridge). Specifically, a strain gage serves as resistance R1, which is variable during

the test, while the other three arms have resistances that do not change. Thus, the
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Figure A.2: Typical Wheatstone bridge circuit [13].

strain gage arm is the only active arm. Half and full bridge circuits are also possible

for various applications but were not used here. The relationship between the input

voltage and the output voltage is given by the following relation, without derivation:

eo = ei

(
R2R3 −R4R1

(R1 + R2) (R3 + R4)

)
(A.3)

When the bridge is balanced, the numerator in (A.3) is zero and thus eo is zero.

A change in voltage in the bridge for a change in resistance can be calculated from

(A.3) by substituting one of the Rj (j = 1, 2, 3, 4) resistance values in the equation

with some arbitrary (Rj + ∆Rj). In the strain gage bridge circuit, essentially the

bridge is initially balanced; R2, R3, and R4 remain constant; and R1 changes through

straining of the specimen. Thus, the changes in resistance R1 are detected through

eo by applying the relation (A.3) and assuming the initial value of eo is zero.
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The second component of the signal conditioning system is the amplifier. The

resistance changes detected as output voltage from the Wheatstone bridge may be

very small, on the order of background noise, in which case an amplifier boosts the

signal to a degree that can be more meaningful. Figure A.3 shows a typical DC

operational amplifier used for such a purpose. The amplifier essentially accepts two

inputs: an inverting input with (-) symbol and a noninverting input with (+) symbol.

A difference voltage amplifier thus satisfies

eo = G (e+ − e−) (A.4)

where G is the gain of the amplifier. The basic idea is the amplifier subtracts the

inverting input voltage from the noninverting input voltage and multiplies the dif-

ference by a constant (gain). The amplification is powered by supply DC voltages

(shown in Figure A.3). Generally these voltages are equal in magnitude and opposite

in polarity, but not necessarily so. If a residual voltage is found to exist in the ampli-

fier’s output, an offset null adjust may be incorporated in the amplifier’s circuitry to

adjust the unwanted residual voltage toward zero.

The amplifier used in the signal conditioning units for this work was a DC

differential operational amplifier, as shown in Figure A.4. The inputs ei1 and ei2 are

the offset voltages from the Wheatstone bridge measured at nodes B and D in Figure

A.2. If R1 = R2 and R3 = R4 (in Figure A.4) then the output voltage from the

amplifier is related to the input voltages by

eo =
R3

R1

(ei1 − ei2) (A.5)

and the need for an offset null adjust is minimized if the input resistances at (-) and

(+) are equal.

Before proceeding, a summary of the strain measurement process is in order.

First, strain gages are bonded to a specimen and wired to a Wheatstone bridge cir-
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Figure A.3: Typical operational amplifier [13].

Figure A.4: Typical DC differential amplifier [13].
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cuit (a gage is represented by R1 in Figure A.2). The Wheatstone bridge circuit is

powered by an input DC voltage source. The bridge is balanced such that the initial

voltage reading output by the bridge arrangement is zero. The output voltages of

the bridge circuit, measured at nodes B and D, are input to a DC differential oper-

ational amplifier. The specimen is strained, the resistance R1 changes, the output

from the Wheatstone bridge is input into an amplifier which amplifies the voltage

difference and outputs the amplified voltage reading to a data acquisition unit, such

as an oscilloscope (discussed later). To this point, the strain measurement is merely

an amplified voltage signal. The next step is to then correlate the voltage signal to

an analagous measure of strain (the procedure for this will be presented in the next

section). Note that a separate signal conditioner unit was used for each strain gage.

The signal conditioners used in the tests additionally had a shunt calibration

feature that was used to correlate the output voltage from the signal conditioning

unit to the strain in the plate specimens. The shunt calibration feature is used in

conjunction with the Wheatstone bridge circuit and is illustrated in Figure A.5. The

shunt calibration feature introduces a “shunt” resistance Rs that can be switched on

or off from the Wheatstone bridge circuit. When the switch is off, R1 is the effective

resistance across that arm of the bridge. When the switch is on, R1 and Rs are two

resistances in parallel, and the effective resistance Re across that arm of the bridge is

now

Re =
R1Rs

R1 + Rs

(A.6)

Note that the effective resistance of two parallel resistances is always less than the

minimum of the two parallel resistances. Assuming initially the bridge circuit is

balanced (e0 = 0) and R1 and Rs are known quantities, then substituting Re in

equation (A.6) into equation (A.3) for R1 the resulting e0 will be some value greater

than zero. Thus, the shunt resistance at that location has excited the Wheatstone

bridge away from its balance point and an output voltage can be read from the
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Figure A.5: Typical Wheatstone bridge circuit with a shunt
resistance for calibration purposes [13].

output of the signal conditioner. This shunt resistance is a known quantity for a

given unit, and thus the system can be calibrated to correlate the output voltage

to a known change in resistance. This is how the mechanical strain from the strain

gage is related to output voltage. Some signal conditioners have a (+) and (-) shunt

calibration feature for calibration in tensile or compression gage loading. The (+)

shunt calibration was shown in Figure A.5, that is, the bridge was excited to output

a positive change in voltage according to equation (A.3). The (-) shunt calibration is

accomplished by employing a similar shunt to the second arm in the circuit (the R2)

arm. Turning the shunt on arm 1 off and the shunt on arm 2 on (with same shunt

resistance R2), and applying equations (A.3) and (A.6), it can be shown that this

results in a (-) voltage reading across the bridge output. Thus, the conditioner with

the shunt calibration features can correlate tensile (+) voltage changes as well as (-)

compressive voltage changes in linear strain gages.
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A.3 Data Acquisition Unit

The last component of the instrumentation is the data acquisition unit. The

voltage signals output from the signal conditioner are useless if they cannot be de-

ciphered. Thus, an instrument capable of detecting, deciphering, and conveying the

signals to the test engineer becomes necessary to the overall experimental process. In

theory, any device capable of measuring a voltage could be used including a voltmeter.

In this case, the goal is to record strain histories over a finite length of time while the

plate specimens respond to impact loading. It is important to capture the voltage

changes over the entire length of the impact event in order to capture the material

response adequately. A voltmeter generally measures instantaneous voltages and can-

not store a history of voltages over time. This makes such a device impractical for use

in these tests. Further, the entire impact event can occur over a length of time on the

order of a millisecond (1.0 x 10−3 sec). An oscilloscope, on the other hand, is capable

of measuring voltages over time. Oscilloscopes vary widely in their capabilities, and

therefore an oscilloscope with the capability to store a voltage-strain history over a

brief period of time with sufficient resolution to capture strain effects on the order of

microseconds (1.0 x 10−6 sec) is necessary.

The oscilloscope used to record strain histories from plate impacts stores the

histories as voltage readings at discrete time intervals. The last step in acquiring the

strain histories is to correlate the voltage readings to the actual physical strain in

the specimen. Each bridge circuit was balanced before testing such that the voltage

output from the strain gages was initially zero. A voltmeter was used to measure the

voltage output from the signal conditioner for each gage with a (+) and (-) shunt

calibration. It was not possible to obtain a perfect zero voltage from the initial

balance, but in each case the value at balance was very close to zero. The shunt

calibration values were each recorded and were essentially the same in magnitude but

opposite in sign. Returning to equation (A.1) and noting that ∆L/L is essentially
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linear strain, equation (A.1) can be rewritten as

ε =
1

GF

∆R

R
(A.7)

The change in resistance across arm 1 (the strain gage arm with gage resistance R1)

of the Wheatstone bridge due to a (+) shunt calibration is given by

∆R = R1 − R1Rs

R1 + Rs

=
R2

1

R1 + Rs

(A.8)

and applied to equation (A.7):

εe =
1

GF

(
R1

R1 + Rs

)
(A.9)

εe is the equivalent strain from the calibration. To correct for any offset error in the

balance and (+), (-) shunt calibration values, knowing that they should be the same

in magnitude, the corrected calibration magnitude ecal is determined by

ecal =
e+

cal − e−cal

2
(A.10)

where the (+) and (-) superscripts on ecal are voltmeter readings for the (+) and

(-) calibrations, respectively. These (+) and (-) calibrations are effectively known

resistance changes related to voltage outputs. These are essentially simulated strains,

noting that a change in resistance of the Wheatstone bridge arm is induced much

the same as a change in resistance across the Wheatstone bridge arm occurs as a

strain gage follows a specimen’s deformation. Thus, the voltages recorded over strain

histories are related to strain by

εg =

(
εe

ecal

)
eg (A.11)

where εg is the measured strain in the gage and eg is the voltage reading from the strain

gage registered by the oscilloscope. The quantity (εe / ecal) is an individual constant
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(with units strain/Volt) for each individual strain gage over the length of a single test

if the test is assumed linear. Thus, a separate value of (εe / ecal) is calculated for each

gage before the beginning of a test. The constant value of this quantity is multiplied

by each of the voltage readings from the oscilloscope to calculate individual strain

readings from each gage over the length of the impact test. In these tests, all strains

were in fact linear-elastic so it is valid to treat this quantity as a constant. The shunt

calibration readings for each gage and each test necessary to calculate the strains over

the strain histories of each individual test were recorded and are found in Appendix

B, along with an example of how to relate voltage data to physical strains.
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Appendix B. Plate Experiments Raw Data

This appendix is a compilation of the data collected from all the plate impact

experiments using the Dynatup. Each individual test includes two tables with

the details and settings applied to each test for reference purposes. The histories

plotted are the voltage readings from each strain gage over the entire window of data

collection. The histories are not smoothed and all 10,000 data points are plotted in

each figure without any smoothing or other processing of the data. The complete

test data record is given in this appendix and only selected results are presented in the

main body of this document. Refer to Chapter V for explanation of how the tests were

conducted and explanation of terms.

Figure B.1: Specimen plate with locations of strain gages for
reference; see Figure 5.10 and 5.11. The fourth gage shown was
not used.

Common Test Parameters for All Tests:

Parameter Value Units

Gage Factor, GF , Strain Gage 1 2.135

Gage Factor, GF , Strain Gages 2, 3 2.100

Strain Gage Resistances, R1 350 Ohms

Shunt Resistance, Rs 49,000 Ohms
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Example

Here an example calculation is provided for converting the voltage readings

to strain [13]. See Chapter V for explanation of the terms and details on how the

relations are developed. The example used will be from test 1, gage 1, in section B.1

of this appendix, but the same process can be used for all the strain gage voltage

measurements.

1. Key numbers and parameters:

Gage Factor, GF , Strain Gage 1: 2.135

Strain Gage Resistances, R1: 350 Ohms (Ω)

Shunt Resistance, Rs: 49,000 Ohms (Ω)

(+) Shunt Calibration, e+
cal: +0.1776 Volts (V)

Zero Calibration, e0
cal: -0.0008 Volts (V)

(-) Shunt Calibrationn, e−cal: -0.1793 Volts (V)

2. Calculate equivalent strain εe from change in resistance due to shunt:

εe =
1

GF

(
R1

R1 + Rs

)
=

1

2.135

(
350 Ω

350 Ω + 49, 000 Ω

)
= 0.003322

3. Calculate calibration voltage measured from (+) and (–) change in resistance due

to shunt:

ecal =
e+

cal − e−cal

2
=

0.1776 V − (−0.1793 V )

2
= 0.1785 V

4. Strain measured in gage (εg) is related to the voltage measurement eg by:

εg =

(
εe

ecal

)
eg =

(
0.003322

0.1785 V

)
eg =

(
0.01861

Strain

V olt

)
eg

5. Multiply each of the 10,000 voltage readings eg in strain gage 1 by 0.01861 strain

per Volt to obtain the strain value for that instant in the strain history.
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B.1 Plate #1: Monolithic 100% Ti-0% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.508 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.040 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 -0.0008 +0.1776 -0.1793

Gage 2 -0.0006 +0.1779 -0.1793

Gage 3 +0.0006 +0.1788 -0.1781

Figure B.2: Raw data strain history for specimen plate #1,
100% Ti - 0% TiB monolithic, strain gage 1.
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Figure B.3: Raw data strain history for specimen plate #1,
100% Ti - 0% TiB monolithic, strain gage 2.

Figure B.4: Raw data strain history for specimen plate #1,
100% Ti - 0% TiB monolithic, strain gage 3.
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B.2 Plate #2: Monolithic 100% Ti-0% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.635 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.476 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 -0.0017 +0.1771 -0.1803

Gage 2 +0.0007 +0.1793 -0.1778

Gage 3 +0.0014 +0.1792 -0.1784

Figure B.5: Raw data strain history for specimen plate #2,
100% Ti - 0% TiB monolithic, strain gage 1.
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Figure B.6: Raw data strain history for specimen plate #2,
100% Ti - 0% TiB monolithic, strain gage 2.

Figure B.7: Raw data strain history for specimen plate #2,
100% Ti - 0% TiB monolithic, strain gage 3.
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B.3 Plate #3: Monolithic 85% Ti-15% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.508 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.050 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 +0.0005 +0.1786 -0.1779

Gage 2 +0.0011 +0.1798 -0.1773

Gage 3 +0.0017 +0.1803 -0.1770

Figure B.8: Raw data strain history for specimen plate #3,
85% Ti - 15% TiB monolithic, strain gage 1.
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Figure B.9: Raw data strain history for specimen plate #3,
85% Ti - 15% TiB monolithic, strain gage 2.

Figure B.10: Raw data strain history for specimen plate #3,
85% Ti - 15% TiB monolithic, strain gage 3.

281



B.4 Plate #4: Monolithic 85% Ti-15% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.635 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.479 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 +0.0003 +0.1792 -0.1783

Gage 2 +0.0004 +0.1789 -0.1780

Gage 3 -0.0008 +0.1783 -0.1791

Figure B.11: Raw data strain history for specimen plate #4,
85% Ti - 15% TiB monolithic, strain gage 1.
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Figure B.12: Raw data strain history for specimen plate #4,
85% Ti - 15% TiB monolithic, strain gage 2.

Figure B.13: Raw data strain history for specimen plate #4,
85% Ti - 15% TiB monolithic, strain gage 3.
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B.5 Plate #5: Monolithic 15% Ti-85% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.381 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 2.585 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 -0.0003 +0.1784 -0.1786

Gage 2 -0.0005 +0.1780 -0.1790

Gage 3 +0.0004 +0.1790 -0.1782

Figure B.14: Raw data strain history for specimen plate #5,
15% Ti - 85% TiB monolithic, strain gage 1.
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Figure B.15: Raw data strain history for specimen plate #5,
15% Ti - 85% TiB monolithic, strain gage 2.

Figure B.16: Raw data strain history for specimen plate #5,
15% Ti - 85% TiB monolithic, strain gage 3.
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B.6 Plate #6: Monolithic 15% Ti-85% TiB Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.508 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.050 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 -0.0004 +0.1774 -0.1790

Gage 2 -0.0007 +0.1777 -0.1793

Gage 3 +0.0006 +0.1791 -0.1782

Figure B.17: Raw data strain history for specimen plate #6,
15% Ti - 85% TiB monolithic, strain gage 1.
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Figure B.18: Raw data strain history for specimen plate #6,
15% Ti - 85% TiB monolithic, strain gage 2.

Figure B.19: Raw data strain history for specimen plate #6,
15% Ti - 85% TiB monolithic, strain gage 3.
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B.7 Plate #7: Seven Layer Ti-TiB FGM Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.508 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.040 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 +0.0008 +0.1792 -0.1777

Gage 2 -0.0011 +0.1773 -0.1797

Gage 3 +0.0002 +0.1789 -0.1784

Figure B.20: Raw data strain history for specimen plate #7,
seven-layer Ti-TiB FGM, strain gage 1.
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Figure B.21: Raw data strain history for specimen plate #7,
seven-layer Ti-TiB FGM, strain gage 2.

Figure B.22: Raw data strain history for specimen plate #7,
seven-layer Ti-TiB FGM, strain gage 3.
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B.8 Plate #8: Seven Layer Ti-TiB FGM Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.635 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.412 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 +0.0002 +0.1788 -0.1784

Gage 2 +0.0012 +0.1796 -0.1773

Gage 3 -0.0007 +0.1779 -0.1794

Figure B.23: Raw data strain history for specimen plate #8,
seven-layer Ti-TiB FGM, strain gage 1.
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Figure B.24: Raw data strain history for specimen plate #8,
seven-layer Ti-TiB FGM, strain gage 2.

Figure B.25: Raw data strain history for specimen plate #8,
seven-layer Ti-TiB FGM, strain gage 3.
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B.9 Plate #9: Seven Layer Ti-TiB FGM Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.762 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 3.765 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 +0.0004 +0.1786 -0.1781

Gage 2 +0.0007 +0.1791 -0.1779

Gage 3 +0.0004 +0.1790 -0.1783

Figure B.26: Raw data strain history for specimen plate #9,
seven-layer Ti-TiB FGM, strain gage 1.
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Figure B.27: Raw data strain history for specimen plate #9,
seven-layer Ti-TiB FGM, strain gage 2.

Figure B.28: Raw data strain history for specimen plate #9,
seven-layer Ti-TiB FGM, strain gage 3.
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B.10 Plate #10: Seven Layer Ti-TiB FGM Specimen

Summary of Test Parameters and Settings:

Test Parameter Value Units

Crosshead Mass 13.06 kg

Crosshead Initial Height 0.889 m

Fixture Screw Torques 20.0 N-m

Dynatup Attachment Screw Torques 35.0 N-m

Actual Impact Velocity 4.078 m/s

Time Window for History 2000 µ-sec

Strain Gage Calibration (Cal), in Volts:

Location Zero Cal (+) Shunt Cal (-) Shunt Cal

Gage 1 -0.0016 +0.1769 -0.1801

Gage 2 -0.0004 +0.1783 -0.1788

Gage 3 +0.0013 +0.1800 -0.1773

Figure B.29: Raw data strain history for specimen plate #10,
seven-layer Ti-TiB FGM, strain gage 1.
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Figure B.30: Raw data strain history for specimen plate #10,
seven-layer Ti-TiB FGM, strain gage 2.

Figure B.31: Raw data strain history for specimen plate #10,
seven-layer Ti-TiB FGM, strain gage 3.
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Appendix C. Overview of Relevant Finite Element Theory

This appendix discusses selected portions of relevant finite theory associated with

the studying the FGM plate impact problem, and more specifically topics asso-

ciated with the commercial FEM code ABAQUS. The ABAQUS FEM code was used

exclusively to study the plate impact problem. Therefore the majority of this ap-

pendix will revolve around concepts associated specifically with that program. This

appendix is summarized directly from the ABAQUS v6.6 Theory Manual [3], with

many concepts explained from other sources as noted. It is far beyond the scope of

this document to present a comprehensive overview of general finite element theory;

rather, brief synopses of key concepts required to model the FGM impacts are given

for reference purposes, most of which are provided without derivation.

The topics in this appendix are organized as follows. First, the explicit integra-

tion numerical technique used by ABAQUS to study dynamic problems is explained.

Next, the measures of deformation, strain, and stress applicable to the impact prob-

lem studied in this work are presented as used by ABAQUS. Once the measures of

deformation, strain, and stress are explained, the governing equations solved by the

explicit numerical technique are briefly discussed. The particular details associated

with the elements used in the finite element models are explained in the context of

the finite element discretization process. Finally, the basic theory behind the contact

model used in the FEMs is presented to gain a more thorough understanding of the

highly nonlinear contact interaction.

C.1 Explicit Integration Solution Scheme

This first section will be dedicated to the manner in which ABAQUS solves

the governing equations of motion for the FEM. ABAQUS has the ability to solve a

wide variety of solid mechanics problems in the context of finite element theory. This

research used a specific solution module in ABAQUS known as “ABAQUS/Explicit.”

The ABAQUS/Explicit module uses an explicit integration numerical technique to

solve the governing equations associated with the system being studied. The solu-
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tion method is specifically formulated to study dynamic, time-dependent problems

with a high degree of material and geometric nonlinearity and is well-suited to wave

propagation problems.

The details of the ABAQUS/Explicit solution scheme are briefly summarized

below from [3]. The dynamics analysis procedure in ABAQUS/Explicit is based upon

implementing an explicit integration rule while using diagonal element mass matrices.

The equations of motion are integrated using the explicit central difference integration

rule

u̇(i+1/2) = u̇(i−1/2) +
∆t(i+1) + ∆t(i)

2
ü(i) (C.1)

u(i+1) = u(i) + ∆t(i+1)u̇(i+1/2) (C.2)

u, u̇, and ü refer to the displacement, velocity, and acceleration vectors. Superscript

(i) is the increment number and ±1/2 are mid-increment values. The central differ-

ence integration operator is categorized as explicit because the kinematic state can be

advanced knowing u̇(i−1/2) and ü(i) from the previous time step. The computational

efficiency of the solution technique lies in the use of the diagonal element mass matri-

ces, which are easily inverted to compute the accelerations at the beginning of time

increment using

Mü(i) = zEXT
(i) −zINT

(i) (C.3)

ü(i) = M−1 · (zEXT
(i) −zINT

(i)
)

(C.4)

M is the diagonal mass matrix, zEXT is the vector of applied external loads, and

zINT is the applied internal force vector determined by the choice of element, as-

sociated stress and strain measures, and material properties. More will be said on

how the internal and external forces are resolved with respect to the finite element

discretization later in this appendix. Equation (C.4) is essentially the classic mass

multiplied by acceleration equals the sum of the external forces minus the sum of the
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internal forces. The governing equations in ABAQUS/Explicit are simplified to fit

into this framework for numerical evaluation. The midincrement velocities u̇(i+1/2),

u̇(i−1/2), etc. require special treatment for initial conditions and certain constraints.

Concerning presentation of results, state velocities are stored in ABAQUS as linear

interpolation of the midincrement velocities

u̇(i+1) = u̇(i+1/2) +
1

2
∆t(i+1)ü(i+1) (C.5)

The central difference operator is not self starting because the midincrement velocity

u̇(−1/2) needs to be defined at time t = 0 (increment i = 0). ABAQUS imposes the

condition

u̇(+1/2) = u̇(0) +
1

2
∆t(1)ü(0) (C.6)

when substituted into the update expression (C.1) yields

u̇(−1/2) = u̇(0) − 1

2
∆t(0)ü(0) (C.7)

The explicit integration technique is conditionally stable, implying that the choice of

time increment is bounded by a critical value beyond which the numerical solution is

unstable. ABAQUS will automatically calculate stable time increments to solve dy-

namics problems, but the user can also specify a time increment of their own choosing.

The internal ABAQUS algorithm that calculates the maximum stable time increment

finds the minimum value over all the elements of the ratio of the characteristic element

length to the dilatational wave speed of the element material.

The general flow of the explicit time integration process is as follows [14]:

1. Set time increment i = 0, define the initial conditions of the system: time t(0),

u(0) = 0, u̇(0), σ(0).
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2. Define the time incrementation t(i), ∆t(i) over the analysis period and the ex-

ternally applied load history zINT.

3. Compute the lumped mass matrix M for the system.

4. Evaluate ü(0) from equation (C.4).

(a) The initial condition for the stresses in the system, σ(0), is used to evaluate

the internal forces zINT. (σ here is simply an arbitrary stress measure

associated with the appropriate strain measure in the constitutive model).

(b) The external forces zEXT are evaluated based on the initially applied loads

from the known load history.

5. Compute u̇(−1/2) according to (C.7).

6. Compute u̇(i+ 1
2
) according to (C.1).

7. Compute u(i+1) according to (C.2).

8. Continue to next time increment: i ← i + 1.

9. If simulation is complete, output results; else continue.

10. Evaluate measures of deformation as required (presented in the next section):

Di−1/2, Fi, Ei (E is any appropriate strain measure associated with the stress

measure σ in the constitutive model).

11. Calculate the stress σi by the chosen constitutive relation.

12. Evaluate ü(i) from equation (C.4).

(a) The stress in the system, σ(i), is used to evaluate the internal forces zINT.

(b) The external forces zEXT are evaluated based on the applied loads from

the known load history.

13. Set i ← i - 1. Compute u̇(i+1) according to (C.5). Reset i ← i + 1. This must

be performed because ü(i+1) is not available until Step 12 is performed in the

subsequent time step.

14. Go to Step 6.
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C.2 Deformation, Strain, and Stress Definitions

It was pointed out in previous chapters that small displacement theory was very

appropriate to studying the response of the functionally graded plates used in this re-

search. In general, however, a strong understanding of how a system will likely behave

under the loading conditions of interest is a key first step in attempting to construct

an accurate finite element simulation of the response. This knowledge allows the en-

gineer to select appropriate elements and constitutive models that will incorporate

material characteristics effectively into the simulation. Various constitutive models

may require different definitions of stress and strain conjugates for use within their re-

spective framework. ABAQUS uses a continuum mechanics-based approach to relate

the deformation, strain, and stress measures in its finite element formulations. This

section outlines a few of the important details associated with this approach, sum-

marized from ABAQUS v6.6 Theory Manual [3], Malvern [76], Belytschko et al. [14],

and Khan & Huang [62] (refer to these works for more extensive derivations and dis-

cussions of the concepts presented). While not all the discussion presented in here is

directly applicable to the work documented in this dissertation, it is included here to

provide a broad understanding of how ABAQUS develops finite element solutions to

a wide variety of engineering problems.

C.2.1 Deformation. Material deformation and movement can be described

as follows. A particle is initially located within a body at a point X in three-

dimensional space and moves to a new position x. (The notation here should not

be confused with the notation used in Chapter VIII for the parameter estimation

technique; the variables are wholly unrelated.) This is illustrated graphically in Fig-

ure C.1. The displacement of point X to new position x is given by

x = X + u (C.8)

The coordinate system associated with the initial reference configuration of the mate-

rial (X) is called the material or Lagrangian coordinate system while the coordinate
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system associated with the current material configuration (x) is called the spatial or

Eulerian coordinate system. The history of the location of the particle can be writ-

ten as x = x(X, t). The inverse is true, that is, X = X(x, t). Given two neighboring

particles at X and X + dX, we know that

dx =
∂x

∂X
· dX (C.9)

must hold in the current configuration. The deformation gradient F is given by

F =
∂x

∂X
(C.10)

and we note that equation (C.9) is written dx = F · dX. The initial infinitesimal

gauge length between the two neighboring particles at their initial positions of X and

X + dX is given by

dL2 = dXT · dX (C.11)

and the infinitesimal length between the two particles at their final positions is simi-

larly given by

dl2 = dxT · dx (C.12)

The stretch ratio of the gauge length after deformation, λ, is given by λ = dl/dL. If

the stretch ratio is equal to one, no strain of the gauge length has occurred.

It can be shown that the deformation gradient F can be decomposed into the

product of a rigid-body rotation tensor R and a pure stretching tensor of three or-

thogonal directions (either V or U) as follows:

F = V ·R = R ·U (C.13)
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Figure C.1: Displacement, stretch, and rotation of material
vector dX to new position dx [76].

Therefore, the motion and deformation of an infinitesimal volume element at X con-

sists of successive application of either (a) translation to x, then rigid-body rotation

by R, and finally a stretch by V or (b) a stretch by U, then rigid-body rotation by R,

and finally translation to x. Defining deformation of material particles in this fashion

is well-suited to problems involving both large and small deformations.

Many materials behave with path and rate-dependency, and therefore constitu-

tive relations must be defined in rate form. Refer to Figure C.2. The velocity of a

material particle is v = ∂x/∂t, where the Lagrangian reference frame is employed for

following the material point through its motion. The velocity gradient between two

neighboring particles is

dv =
∂v

∂x
· dx = L · dx (C.14)

L = ∂v/∂x is the velocity gradient. Note that the following relations are also of

interest:

dv = L · dx = L · F · dX (C.15)

dv =
∂

∂t
(F · dX) = Ḟ · dX (C.16)
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Figure C.2: Relative velocity dv of particle Q at point q rel-
ative to the particle P at point p [76].

Comparing equations (C.15) and (C.16), we see that Ḟ = L ·F. The velocity gradient

L is composed of the symmetric rate of deformation tensor D and the anti-symmetric

rotation rate (or “spin”) tensor W such that

L = D + W (C.17)

D =
1

2

(
L + LT

)
(C.18)

W =
1

2

(
L− LT

)
(C.19)

C.2.2 Strain and Strain Rate. Two strain measures that are directly tied

to the deformation gradient are worth mentioning: the Green strain (Lagrangian co-

ordinate system) and the Eulerian strain (Eulerian coordinate system). First, the

Green strain is used occasionally for two reasons: (1) it is computationally convenient

because it is directly related to the deformation gradient and (2) it is well suited to
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structural problems where large deformations typically involve large rotations accom-

panied with small strains (recall that the deformation gradient can be decomposed

into stretch and rotation contributions). The Green strain tensor EG is given by

EG =
1

2

(
FT · F− I

)
(C.20)

and can also be written in the form

EG
IJ =

1

2

[
∂xk

∂XI

∂xk

∂XJ

− δIJ

]
(C.21)

All subscripts have values 1–3. δIJ is the Kronecker Delta array where the elements

of the array equal one when I = J and zero everywhere else. The Green strain rate

ĖG is

ĖG =
1

2

(
ḞT · F + FT · Ḟ

)
=

1

2
FT · (L + LT

) · F = FT ·D · F (C.22)

The Green strain and strain rate are associated with the Lagrangian material de-

scription. The corresponding Eulerian strain E, associated with the Eulerian material

description, is given by

E =
1

2

(
I− (

F−1
)T · F−1

)
(C.23)

and can also be written in the form

Ekm =
1

2

[
δij − ∂XJ

∂xk

∂XJ

∂xm

]
(C.24)

All subscripts have values 1–3. The Eulerian strain rate Ė is

Ė = D− (
E · L + LT · E)

(C.25)
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The Eulerian strain and strain rate tensors are equally valid for use but can be com-

putationally expensive due to the need to calculate the inverse of the deformation

gradient.

Before proceeding to stress measures associated with these strains, it is worth-

while to look at these strain measures in terms of displacement u. The Green strain,

in terms of displacement, can be found by evaluating equation (C.8) with the dis-

placement gradient and applying equation (C.20):

EG
ij =

1

2

[
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

]
(C.26)

and the Eulerian strain, in terms of displacement, can be found by evaluating equation

(C.8) with the displacement gradient and applying equation (C.23):

Eij =
1

2

[
∂ui

∂xj

+
∂uj

∂xi

− ∂uk

∂xi

∂uk

∂xj

]
(C.27)

If the displacements ui with respect to the Lagrangian coordinates Xi or the Eulerian

coordinates xi are small compared to unity, the squares and products of the derivatives

can be ignored in comparison to the linear terms. The remaining terms are called

the small-strain components. When the displacements and displacement gradients are

sufficiently small, as in the case of linear theory of elasticity, the distinction between

the two small-strain definitions is usually ignored [76]. This is an important conclusion

with regard to the impact problem studied in this work since the maximum strains

in the experimental strain histories rarely exceeded 0.2% (see Chapter V) and almost

no global plasticity was observed in the plate specimens.

C.2.3 Stress. Once the deformation history in a body is defined, the analyst

generally has all the necessary information to describe the response. The deformation

history can then be related to either the Lagrangian or Eulerian coordinate systems,

depending on which coordinate system is most convenient to describe the system

response. The strain definitions are related to a stress definition appropriate to the
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coordinate system chosen, or stress conjugate, through a constitutive model. Before

any choice of constitutive model relating the stress-strain conjugates directly can be

made, it is first necessary to define stress measures in the coordinate systems.

It was stated earlier that ABAQUS uses the Green strain tensor extensively

in its formulations for computational convenience. The Green strain tensor is a

Lagrangian strain description and therefore requires a Lagrangian associated stress

measure; specifically the Second-Piola Kirchhoff stress tensor ΣII. ΣII is termed a

pseudo−stress tensor because of the fact that it is measured with respect to the initial

material configuration. Refer to Figure C.3. A force d̃P acting on the infinitesimal

undeformed area dS0 with unit normal N̂ is related to the force vector dP on the

deformed area dS by

d̃P = F−1 · dP (C.28)

If the traction vectors t0 and t̃ are defined by

t0 dS0 = dP = t dS (C.29)

t̃ dS0 = d̃P = F−1 · t dS (C.30)

then the Second Piola-Kirchhoff stress tensor ΣII is related to the traction vectors t0

and t̃ by

t̃ = N̂ ·ΣII = F−1 · t0 (C.31)

More simply put, the Second Piola-Kirchhoff stress tensor relates the stress state due

to a load to its undeformed configuration. The Cauchy stress tensor σ, on the other

hand, relates the stress state to a load to its deformed or current configuration. For

this reason, the Cauchy stress tensor is termed a true stress tensor. The Cauchy stress

is always reported in ABAQUS because it is generally of more interest to engineers as

the direct measure of the traction being carried per unit area by any internal surface

in a body under consideration. The Cauchy stress is associated with the Eulerian

reference frame and defines the stress state at the current material configuration.
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Figure C.3: Force vectors for stress definitions in the unde-
formed state (subscript 0) and the deformed state [76].

The 2nd Piola-Kirchhoff stress tensor is related to the Cauchy stress tensor by

σ =
dV0

dV
F ·ΣII · FT (C.32)

where dV is the current (infinitesimal) volume and dV0 is the reference (infinitesimal)

volume.

The stress and strain conjugates presented in this section will be referred to

periodically through the remainder of this appendix.

C.3 Governing Equations

This section will present the governing equations of interest in this work within

the framework of ABAQUS/Explicit. These equations will be discussed very briefly

without derivation based on the ABAQUS v.6.6 Theory Manual [3] and the text by

Belytschko et al. [14]. The equations apply to Lagrangian finite element meshes,

meaning the mesh and nodes follow the material through deformation (as opposed to

Eulerian meshes where material flows through the fixed nodes and mesh). The two
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sets of governing equations are more or less equivalent but are associated with one

coordinate system versus the other coordinate system. The equations are based on

the concept of virtual power, which in words, states that the virtual inertial (kinetic,

subscript kin) power is equal to the difference between rate of virtual work (Ẇ )

performed by external loads (subscript ext) and the virtual rate of internal work

(subscript int). In equation form, without derivation, the virtual power is given by

δẆkin = δẆext − δẆint∫

V

δv · ρv̇dV =

(∫

S

δv ·Φ dS +

∫

V

δv · FdV

)
−

∫

V

∂(δv)

∂x
σ dV (C.33)

where F are body forces and Φ are surface tractions. The symbol δ in front of the

velocities signifies that these are “virtual” velocities that must admissible functions

according to the calculus of variations (a thorough treatment of this is beyond the

scope of this appendix). This governing equation is used if the constitutive equation

for the material is based on the spatial (Eulerian) reference frame. A constitutive

model such as this would relate, for instance, Eulerian strain to Cauchy stress. This

formulation is associated with what is called an updated Lagrangian mesh, that is,

the governing equations are based on the current, or “updated,” configuration of the

body. In the usual finite element discretization,

u = u = [N] uI

v = u̇ = [N] vI

a = ü = [N] aI (C.34)

Here, u, v, a are general displacements, velocities, and accelerations and a subscript

I refers to nodal displacements, velocities, and accelerations of the element. [N] are

the element’s interpolating shape functions. The virtual velocities δv are related to

virtual velocities at element nodes by

δv = δvI [N] (C.35)
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Substituting this relation into the virtual power equation and bringing all integrals

to the left side of the equation yields

δv

{∫

V

[N] · ρv̇dV −
(∫

S

[N] ·Φ dS +

∫

V

[N] · FdV

)

+

∫

V

∂[N]

∂x
σ dV

}
= 0 (C.36)

For a non-trivial solution to the equation, the terms in brackets must equal zero:

{∫

V

[N] · ρv̇dV −
(∫

S

[N] ·Φ dS +

∫

V

[N] · FdV

)

+

∫

V

∂[N]

∂x
σ dV

}
= 0 (C.37)

Equation (C.37) is nothing more than stating the sum of the forces is equal to mass

multiplied by acceleration. That is,

Mü =

∫

V

[N] · ρv̇dV =

(∫

V

ρ[N][N]dV

)
v̇I

zEXT =

(∫

S

[N] ·Φ dS +

∫

V

[N] · FdV

)

zINT =

∫

V

∂[N]

∂x
σ dV (C.38)

which is merely in the form of equation (C.4)

Mü = zEXT −zINT

The second set of governing equations are exactly the same except instead of

the spatial-Eulerian reference frame, the material-Lagrangian reference frame is used.

Using the relations of the previous section, the deformation-strains-stresses in the

Eulerian frame must be transformed to the Lagrangian frame (subscript 0). Rather
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than rewriting the entire formulation, only the final equations will be shown:

Mü =

∫

V0

[N] · ρ0v̇dV0 =

(∫

V0

ρ0[N][N]dV0

)
v̇I

zEXT =

(∫

S0

[N] ·Φ dS0 +

∫

V0

[N] · FdV0

)

zINT =

∫

V0

∂[N]

∂X

(
ΣII · FT

)
dV0 (C.39)

and fits into the framework of equation (C.4). This set of governing equations is called

the total Lagrangian formulation since the “total” deformation is always related back

to the initial reference configuration.

C.4 Solid Continuum Finite Elements

Eight-noded linear isoparametric hexahedral bricks were used to construct all

the three-dimensional finite element models in this study. The precise element used

in ABAQUS was the “C3D8R” element. The element’s name is actually code-letters

for a continuum (C) element in three dimensions (3D) with eight nodes (8) and stiff-

ness determined by reduced integration (R). These elements were chosen for their

computational efficiency and their versatility in a wide range of nonlinear applica-

tions, including contact analyses and re-meshing with large deformations (the small-

strain/linear-elastic nature of the FGM plates during the impact experiments did not

require these features during modeling, but this was not known at the outset). Here,

the details associated with these elements in the context of this research work are pre-

sented. Note that from this point forward, the spatial coordinate system (including the

Cauchy stress–Eulerian strain conjugates) will be used in all equations and discussion

as ABAQUS used this coordinate system for the constitutive relations and reported

results. However, also note that since the strains were relatively small in this work,

the differences that would have occurred if a Lagrangian-based constitutive model

and reference frame had been used instead would be negligible [76]. This section is

summarized from the ABAQUS v6.6 Theory Manual [3], with supporting discussions
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drawn heavily from the popular finite element texts by Cook et al. [31] and Belytschko

et al. [14].

C.4.1 Isoparametric Element Formulation. The elements are isoparametric,

implying that the same shape functions are used to interpolate (or “map”) displace-

ment and geometry information for the element based on a reference configuration.

Refer to Figure C.4. The coordinates x and displacement u at a point within the

element are given by

x = [N]xi

u = [N]ui (C.40)

where xi = (xi, yi, zi) are the actual (Cartesian) coordinates of node i = 1,...,8 and ui

= (ui, vi, wi) are the displacements of i-th node in the actual coordinate system (in

our case rectangular Cartesian coordinates). The eight shape functions in [N] used

in these hexahedrons are

N1 =
1

8
(1− g) (1− h) (1− r)

N2 =
1

8
(1 + g) (1− h) (1− r)

N3 =
1

8
(1 + g) (1 + h) (1− r)

N4 =
1

8
(1− g) (1 + h) (1− r)

N5 =
1

8
(1− g) (1− h) (1 + r)

N6 =
1

8
(1 + g) (1− h) (1 + r)

N7 =
1

8
(1 + g) (1 + h) (1 + r)

N8 =
1

8
(1− g) (1 + h) (1 + r) (C.41)

g, h, and r are the reference coordinates shown in Figure C.4. One chooses a point in

the reference coordinates within the element domain, then substitutes the (g,h,r) co-
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ordinates into (C.41) and applies the equations (C.40) to obtain the actual coordinate

location and displacements at that reference point. The use of the isoparametric for-

mulation of elements between actual and reference coordinate systems has numerical

advantages that simplify the analyses of complex geometries. The Jacobian matrix is

defined by:

[J] =




Ni,gxi Ni,gyi Ni,gzi

Ni,hxi Ni,hyi Ni,hzi

Ni,rxi Ni,ryi Ni,rzi


 (C.42)

The comma in the usual subscript notation represents the partial derivative is taken

with respect to the variable after the comma and the repeated subscript implies

summation. The determinant of the Jacobian matrix, J = det[J], is essentially a

scale factor between the reference and physical size of the elements.

C.4.2 Constitutive Relation. The FGM plates were observed to be elastic to

failure during the impact tests. The eight-noded linear brick elements were used with

an isotropic, linear-elastic constitutive relation. In rectangular Cartesian coordinates,

the linear-elastic stress-strain relations for an isotropic material are





σxx

σyy

σzz

σxy

σxz

σyz





=




λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ








εxx

εyy

εzz

2εxy

2εxz

2εyz





(C.43)

which is more conveniently written as

σ = [Cel] ε (C.44)
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Figure C.4: Isoparametric hexahedral element geometry. The
(g,h,r) coordinates of nodes 1-8 in the parent domain are (-1,-
1,-1), (+1,-1,-1), (+1,+1,-1), (-1,+1,-1), (-1,-1,+1), (+1,-1,+1),
(+1,+1,+1), (-1,+1,+1), respectively.
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where [Cel] is the elastic stiffness matrix, σ is the Cauchy stress tensor and ε is the

(Eulerian) elastic strain tensor. (Earlier the Eulerian strain tensor was denoted E;

here the notation is changed to avoid confusion between strain components and the

elastic modulus while also maintaining consistency with the strain notation used in

the chapters contained in the main body of this work.) The parameters λ and µ are

the Lamé constants (not to be confused with Lagrange multipliers, used in Chapter

VIII), which are related to the elastic modulus and Poisson’s ratio by

λ =
νE

(1 + ν)(1− 2ν)
(C.45)

µ =
E

2(1 + ν)
(C.46)

The strains were small throughout the impact tests (on the order of 0.2% strain or

less). When small strains and rotations are involved, the distinction between the

Eulerian and Lagrangian reference frames in constitutive models is generally ignored

[76].

C.4.3 Quadrature. ABAQUS uses numerical techniques to solve the govern-

ing equations for a finite element model. As shown in the previous section, integration

of functions over a domain is an operation that features prominently in the governing

equations. A common numerical technique for approximating the integral of a func-

tion is called quadrature. There are many versions of quadrature, but essentially all

evaluate a function at specific points, multiply the evaluated function by a weighting

factor, then add the results. Gaussian quadrature is used by ABAQUS, and this form

of quadrature is designed to choose evaluation points and weights to minimize error

in the integration especially for polynomial functions (which is precisely what we have

based on the choice of shape functions). The goal of this section is to briefly point

out the role of Gaussian quadrature and comment how its implementation affects the

solution of the finite element model. Applied to the isoparametric three-dimensional
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Table C.1: Sampling point locations and weight fac-
tors for Gauss quadrature over the interval g = -1 to
g = +1 [31], [143].

Order Degree of Sampling Pt. Weight
n Precision Locations gi Factor Wi

1 1 0 2

2 3 ± 1/
√

3 1

3 5 ±√0.6 5/9
0 8/9

element, the Gauss quadrature takes the following mathematical form:

I =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(g, h, r) dg dh dr ≈
∑

i

∑
j

∑

k

Wi Wj Wk f(gi, hj, rk) (C.47)

where the W variables are weight factors. The Gaussian points and weights are shown

in Table C.1. To explain the table, a function f can be approximated by sampling

the function at 1, 2, or 3 points and applying the associated weights to those points

(actually there is no limit to the number of points and associated weights that can

be used; many numerical analysis texts have tables constructed to assist for this

purpose). The more Gaussian points that are used to evaluate f , the more accurate

the results will be. For a polynomial of degree 2n − 1, it turns out that Gaussian

quadrature exactly integrates the function f if n or more points are used. This is

what is meant by the “degree of precision.” For instance, a polynomial of degree five

requires a minimum of three Gaussian points with associated weights to integrate the

function exactly. In multiple dimensions, as in the case of our elements, quadrature

is performed by evaluating f at the points listed in Table C.1 with associated weights

in three dimensions as suggested in equation (C.47).

Recall that the three-dimensional element is a linear element because the shape

functions used to interpolate the displacements are linear functions in three-dimensions.

∂[N]/∂x and ∂[N]/∂X in (C.38) and (C.39) are functions of g, h, and r. If the con-

stitutive relation [Cel] is a constant (as in our case), then the integrand will contain
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polynomial squares of g, h, and r. To integrate this exactly requires a minimum

of two Gauss points in each coordinate direction, or eight integration points total.

Unfortunately for the linear three-dimensional brick element, exactly integrating the

relation to determine the internal forces can cause an element defect called “locking,”

meaning that the response of the element for certain deformation modes when under

load can be magnitudes of order larger than it is in reality. This is a by-product

of the assumed displacement fields and the imposed conditions on the elements in

the model, not on the integration procedure itself. The full integration (meaning the

exact integration) of the internal forces merely includes this element defect if it exists

given the conditions of the model. One remedy to this problem is approximating the

internal forces by one order less than is required to exactly integrate the expression.

In the case of the linear brick, one order of quadrature less would reduce the integra-

tion points from a 2 x 2 x 2 arrangement to a single quadrature point at the center of

the brick. This has the effect of softening the element since some of the internal force

contributions are now approximated instead of exact. Underintegrating the internal

forces can additionally increase computational efficiency without necessarily decreas-

ing the accuracy of the element. However, underintegrating all modes throughout the

entire element can actually introduce element defects such as spurious deformation

modes under certain modeling conditions that can produce results just as infeasible

as an element experiencing locking. In ABAQUS, a compromise is met by selectively

underintegrating certain deformation modes (associated with deviatoric stresses) and

fully integrating other modes (associated with hydrostatic stresses). This allows for

computational efficiency, reduces locking, and can reduce potentially spurious modes.

The “reduced integration” feature associated with the C3D8R element refers to this

process.

C.5 Contact Algorithm

The impact problem requires that contact be established between the specimen

plate and the tup in the finite element models. Contact is additionally specified
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Figure C.5: Two bodies, ΩA & ΩB, in contact over surface
ΓC [14].

between fastener screws and various components of the specimen plate fixture as

well as between the plate specimen and the fixture itself. Modeling contact in a

finite element model is a highly-nonlinear process in the governing equations and

the mathematics behind contact analysis are far beyond the scope of this appendix.

Since contact between components constitutes a large part of the load transfer and

boundary conditions in the finite element model, it is worth presenting a few key

concepts concerning the implementation in ABAQUS. The focus here will be definition

of contact between two surfaces, traction conditions due to contact, and high-level

implementation of contact in the global FEM. No derivations are presented for brevity

purposes and the goal is to provide a rudimentary understanding of how contact is

analyzed in the FEMs. The theory presented in this discussion is summarized from

Belytschko et al. [14]; references to the ABAQUS implementation are taken from the

ABAQUS v6.6 Theory Manual [3].

Assume two bodies, ΩA and ΩB shown in Figure C.5, bounded by (surfaces)

ΓA and ΓB. The bodies come together and are in contact together. The interface
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between the two bodies is defined by ΓC :

ΓC = ΓA ∩ ΓB (C.48)

At the contact interface (or contact surface), a local coordinate system is established

at each point of contact on each surface, and unit vectors tangent to the surface can

be defined (For ΓA, ēAx and ēAy are the tangent unit vectors; for ΓB, ēBx and ēBy

are the unit vectors). The cross product of the unit vectors at a point on one of the

surfaces is a vector normal to the surface (n̄A and n̄B, respectively). On the contact

surface, the following is assumed to hold:

n̄A = −n̄B (C.49)

This is merely the mathematical equivalent of stating the normal vectors of the surface

at a contact point are opposite in direction. The velocity fields of bodies ΩA and

ΩB are vA and vB and can be expressed in terms of their normal and tangential

(superscripts N and T ) components:

vA = vN
A n̄A + vT

A , vN
A = vA · n̄A (C.50)

vB = vN
B n̄B + vT

B , vN
B = vB · n̄B (C.51)

The bodies ΩA and ΩB are governed by the conservation of mass, momentum,

and energy. The conservation of momentum must be satisfied at the contact interface

and the traction across the interface cannot be tensile. These conditions will now be

addressed specifically in order to define kinematic conditions for contact. First, the

bodies are not allowed to interpenetrate each other, that is

ΩA ∩ ΩB = 0 (C.52)
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Interpenetrability is often viewed from a rate form at each point on the contact surface

through the following relation:

γN = vA · n̄A + vB · n̄B = (vA − vB) · n̄A ≡ vN
A − vN

B ≤ 0 on ΓC (C.53)

γN is called the rate of interpenetrability. When the two bodies are in contact, γN is

zero. When they separate, the constant is less than zero.

Next, the tractions across the interface must observe the conservation of mo-

mentum. The sum of the tractions (t) across the interface must be zero:

tA + tB = 0 (C.54)

The normal tractions are given by

tNA = tA · n̄A (C.55)

tNB = tB · n̄B (C.56)

(C.57)

and the normal tractions observe

tNA + tNB = 0 (C.58)

The normal tractions on the surfaces of the bodies can only be compressive. When

the bodies are separated, the tractions are zero. When the bodies are in contact, they

satisfy the subsequent relations. The tangential tractions across the contact surface

are given by

tT
A = tA − tNA n̄A (C.59)

tT
B = tB − tNB n̄B (C.60)
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and must also satisfy

tT
A + tT

B = 0 (C.61)

In the case of frictionless models, the tangential tractions are zero. The interpenetra-

bility rate γN and the normal traction components tN can be combined into a single

contact condition which can be useful:

tN γN = 0 (C.62)

When two bodies are in contact, γN is zero; when the two bodies are separated, the

traction tN is zero. Thus, (C.62) is satisfied regardless of the contact state between

the two bodies.

The previous paragraphs looked at the kinematic conditions for contact from a

velocity standpoint. Similar conditions can be determined based on a displacement

formulation. The equations and formulation for displacement conditions are compli-

cated and not presented, but it is simple to visualize conceptually what occurs under

the formulation. The displacement formulation assesses the position of the bodies

over time and determines when and to what degree the bodies have interpenetrated

each other. If the bodies have interpenetrated, the displacements are corrected to

enforce the necessary contact conditions. The velocity and displacement conditions

for contact can more or less be used independent of each other to assess contact, but

in ABAQUS and other finite element codes they are often used together to efficiently

model the contact interaction.

In ABAQUS, the user specifies two or more surfaces that are expected to come

into contact during a simulation. The surfaces contain nodes which may or may not be

coincident with each other once contact occurs; therefore the contact solution is based

on the surface locations and the load is distributed along element edges. Contact in

ABAQUS during a dynamic analysis is assessed at each time step. If the surfaces

of the bodies are geometrically positioned relative to each other such that contact

must be enforced, the required tractions are applied to each surface. If the surfaces
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are geometrically positioned such that contact will not occur, the tractions are not

applied. It should also be noted that only surfaces defined on bodies expected to come

into contact are included in the contact formulation. Contact enforcement will not be

applied to surfaces and bodies where contact enforcements have not been defined that

actually do come into contact in the FEM. The result of this will be highly erroneous

solutions. Contact in finite element models is a highly nonlinear process due to its

“on-off” nature that can introduce sharp discontinuities to displacement and velocity

fields during the course of solving the governing equations.

ABAQUS allows definition of two types of pressure-displacement relations in

association with contact enforcement. The first is “hard” contact where the pressure

is zero if no contact; interpenetration is zero if contact occurs and applied pressure

is nonzero. This type of contact enforcement was used in the FEMs in this research.

The second type of relation that can be applied is a pressure-displacement curve from

known behavior of two bodies and materials relative to each other. The curves may

take on linear, exponential, piece-wise continuous, or tabulated form in ABAQUS,

and the curves are usually produced from experimental data. In this case, when

contact has not been established, no load is applied to the element. When contact

between surfaces does occur, a stiffness contribution from the pressure-displacement

relationship must be included and enforced. The traction applied is related to the

provided pressure-displacement relation.

The technique used to strictly enforce contact in ABAQUS for this work was

a kinematic predictor/corrector contact algorithm. In hard contact, no penetrations

are allowed using this algorithm. A brief summary of how this algorithm works is

as follows (taken from [2]). First, contact surfaces in the model are chosen; two

surfaces at a time. One surface is designated as a “master” surface, and the other

surface is designated as a “slave” surface (doing so is for solution purposes but also

has some physical application). When choosing such surfaces as master or slave, the

slave surface is generally assumed to conform to the shape of the master surface and

thus the master surface is usually chosen to be a less deformable surface than that
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of the slave (but not necessarily so). ABAQUS solves for the state of the model in a

given time increment assuming that no contact occurs. ABAQUS will then determine

which nodes associated with the slave surface in the “predicted” state penetrate the

master surface. The depth of each slave node’s penetration, the mass associated with

it, and the time increment are used to calculate a resisting force required to oppose

penetration. In other words, the resisting force is the force which would have caused

the slave node to exactly contact the master surface had it been applied immediately

during the current time increment. The resisting forces of all slave nodes are then

distributed to the nodes on the master surface. The mass of each contacting slave node

is also distributed to the master surface nodes and added to their mass to determine

the total inertial mass of the contacting interfaces. ABAQUS will then use these

distributed forces and masses to calculate an acceleration “correction” for the master

surface nodes. Acceleration corrections for the slave nodes are then determined using

the predicted penetration for each node, the time increment, and the acceleration

corrections for the master surface nodes. ABAQUS uses these acceleration corrections

to obtain a corrected configuration in which the contact constraints are enforced.

When using this contact enforcement algorithm, it is still possible for the master

surface to penetrate the slave surface in the corrected configuration, but the effect can

be minimized by refining the mesh associated with the master-slave contact surfaces.
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